Learn R Programming

eLNNpaired (version 0.2.3)

samrOneClass:

Description

A wrapper function of samr for paired data.

Usage

samrOneClass(
  es, 
  fdr.output = 0.05, 
  nperms = 100)

Arguments

es
An ExpressionSet object stores within-pair log2 difference.
fdr.output
fdr cutoff for output in significant genes table. (see SAM function in samr package.
nperms
Number of permutations used to estimate false discovery rates. (see samr function in samr package).

Value

A list of 5 elements:
samr.obj
object returned by samr function
del
estimated cutoff value required by samr.compute.siggenes.table function. See the source code of SAM function
delta.table
object returned by samr.compute.delta.table
siggenes.table
object returned by samr.compute.siggenes.table function
memGenes
probe cluster membership. 1 indicates over-expressed probes; 2 indicates under-expressed probes; 3 indicates non-differentially expressed probes
memGenes2
2-cluster probe cluster membership. 1 indicates differentially-expressed probes; 0 indicates non-differentially-expressed probes.

References

Li Y, Morrow J, Raby B, Tantisira K, Weiss ST, Huang W, Qiu W. (2017), <doi:10.1371/journal.pone.0174602>

Examples

Run this code
set.seed(100)
G = 500
n = 10

delta_1 = -0.8184384  
xi_1 = -1.1858546 
lambda_1 = -10.6309216  
nu_1 = -3.5536255  

delta_2 = -0.8153614  
xi_2 = -1.4120148 
lambda_2 = -13.1999427  
nu_2 = -3.3873531   

lambda_3 = 0.7597441  
nu_3 = -2.0361091 

psi = c(delta_1, xi_1, lambda_1, nu_1,
        delta_2, xi_2, lambda_2, nu_2,
        lambda_3, nu_3)
t_pi = c(0.08592752, 0.07110449)

c1 = qnorm(0.95)
c2 = qnorm(0.05)

E_Set = gen_eLNNpaired(G, n, psi, t_pi, c1, c2)

result = samrOneClass(es=E_Set)

print(table(result$memGenes, fData(E_Set)$memGenes.true))
print(table(result$memGenes2, fData(E_Set)$memGenes2.true))

Run the code above in your browser using DataLab