This function computes the parameter estimates of a partial credit model for polytomous
item responses by using CML estimation.
Usage
PCM(X, W)
Arguments
X
Input data matrix or data frame with item responses (starting from 0); rows represent individuals, columns represent items.
W
Design matrix for the PCM. If omitted, the function will compute W automatically.
Value
Returns an object of class Rm and contains the log-likelihood value,
the parameter estimates and their standard errors.
modelType of model.
loglikThe log-likelihood.
dfDegrees of freedom.
iterNumber of iterations required.
etaparEstimated basic item parameters.
se_etaStandard errors of the estimated basic item parameters.
hessianHessian matrix.
betaparEstimated item parameters.
LRThe log-likelihood test statistic for the model.
WDesign matrix.
etaparG1Parameters for first LR-group.
etaparG2Parameters for second LR-group.
Details
Through specification in W, the parameters of the categories with 0 responses
are set to 0 as well as the first category of the first item. Available methods
for PCM-objects are print, coef, model.matrix,
vcov, plot, summary.
References
Fischer, G. H., and Molenaar, I. (1995). Rasch Models - Foundations,
Recent Developements, and Applications. Springer.