Learn R Programming

eRm (version 0.3.1)

RM: Estimation of Rasch Models

Description

This function computes the parameter estimates of a Rasch model for binary item responses by using CML estimation.

Usage

RM(X, W)

Arguments

X
Input 0/1 data matrix or data frame; rows represent individuals, columns represent items.
W
Design matrix for the Rasch model. If omitted, the function will compute W automatically.

Value

  • Returns an object of class Rm and contains the log-likelihood value, the parameter estimates and their standard errors.
  • modelType of model.
  • loglikThe log-likelihood.
  • dfDegrees of freedom.
  • iterNumber of iterations required.
  • etaparEstimated basic item parameters.
  • se_etaStandard errors of the estimated basic item parameters.
  • hessianHessian matrix.
  • betaparEstimated item parameters.
  • LRThe log-likelihood test statistic for the model.
  • WDesign matrix.
  • etaparG1Parameters for first LR-group.
  • etaparG2Parameters for second LR-group.

Details

For estimating the item parameters the CML method is used. Available methods for RM-objects are print, coef, model.matrix, vcov, plot, summary.

References

Fischer, G. H., and Molenaar, I. (1995). Rasch Models - Foundations, Recent Developements, and Applications. Springer.

See Also

print.eRm,coef.eRm,vcov.eRm,model.matrix.eRm,plot.Rm, summary.eRm

Examples

Run this code
#Rasch model with 30 items, 100 persons

data(raschdat)
res <- RM(raschdat)
res
summary(res)                
plot(res)

Run the code above in your browser using DataLab