Learn R Programming

eRm (version 0.9-2)

plotICC: ICC and Goodness-of-Fit Plots

Description

Various plot functions for visualizing the item characteristic curves

Usage

## S3 method for class 'Rm':
plotICC(object, item.subset = "all", empirical = FALSE, 
                     xlim = c(-4, 4), ylim = c(0, 1), xlab = "Latent Dimension", 
                     ylab = "Probability to Solve", col = NA, lty = 1, legpos = "left", ...)
## S3 method for class 'dRm':
plotjointICC(object, item.subset = "all", legend = TRUE, 
                           xlim = c(-4, 4), ylim = c(0, 1), xlab = "Latent Dimension", 
                           ylab = "Probability to Solve", lty = 1, legpos = "left", ...)

Arguments

object
object of class Rm or dRm
item.subset
Subset of items to be plotted. Either a numeric vector indicating the column in X or a character vector indiciating the column name. If "all", all items are plotted.
empirical
Option for plotting the empirical ICCs for objects of class dRm
legend
If TRUE, legend is provided, otherwise the ICCs are labeled.
xlab
Label of the x-axis.
ylab
Label of the y-axis.
xlim
Range of person parameters.
ylim
Range for probability to solve.
col
If NA, line color is determined automatically.
lty
Line type.
legpos
Position of the legend with possible values "bottomright", "bottom", "bottomleft", "left", "topleft", "top", "topright", "right" and "cen
...
Additional plot parameters.

Value

    See Also

    plotGOF

    Examples

    Run this code
    # Rating scale model, ICC plot for all items
    data(rsmdat)
    res <- RSM(rsmdat)
    thresholds(res)
    plotICC(res)
    
    # Rasch model with empirical ICCs
    newdata <- matrix(sample(0:1, 1000, replace = TRUE), ncol = 5)
    res <- RM(newdata)
    plotICC(res, empirical = TRUE)
    
    # Joint ICC plot for items 2, 6, 8, and 15 for a Rasch model
    data(raschdat1)
    res <- RM(raschdat1)
    plotjointICC(res, item.subset = c(2,6,8,15), legpos = "left")

    Run the code above in your browser using DataLab