Learn R Programming

eRm (version 0.9.0)

person.parameter: Estimation of Person Parameters

Description

Maximum likelihood estimation of the person parameters.

Usage

## S3 method for class 'eRm':
person.parameter(object, se = TRUE, splineInt = TRUE)
## S3 method for class 'ppar':
summary(object, ...)
## S3 method for class 'ppar':
print(x, ...)
## S3 method for class 'ppar':
plot(x, xlab = "Person Raw Scores", ylab = "Person Parameters (Theta)", main = NULL, ...)

Arguments

object
Object of class eRm.
se
If TRUE, the standard errors are estimated.
splineInt
TRUE if the missing person raw scores (0 and full raw score included) are interpolated using a cubic spline regression.
x
Object of class ppar.
xlab
Label of the x-axis.
ylab
Label of the y-axis.
main
Title of the plot.
...
Further arguments to be passed to or from other methods. They are ignored in this function.

Value

  • The function person.parameter returns an object of class ppar containing:
  • loglikLog-likelihood.
  • nparNumber of parameters.
  • niterNumber of iterations.
  • thetaparPerson parameter estimates.
  • se.thetaStandard errors of the person parameters.

Details

If the data set contains missing values, person parameters are estimated for each missing value subgroup.

References

Fischer, G. H., and Molenaar, I. (1995). Rasch Models - Foundations, Recent Developements, and Applications. Springer. Mair, P., and Hatzinger, R. (2007). Extended Rasch modeling: The eRm package for the application of IRT models in R. Journal of Statistical Software, 20(9), 1-20. Mair, P., and Hatzinger, R. (2007). CML based estimation of extended Rasch models with the eRm package in R. Psychology Science, 49, 26-43.

See Also

itemfit.ppar,personfit.ppar

Examples

Run this code
#Person parameter estimation of a rating scale model
data(rsmdat)
res <- RSM(rsmdat)
pres <- person.parameter(res)
print(pres)
summary(pres)
plot(pres)

#Person parameter estimation for a Rasch model with missing values and
#witout spline interpolation.
data(raschdat1)
raschNA <- raschdat1
raschNA[1:40,1] <- NA                      #first item not presented
raschNA[41:100,2] <- NA                    #second item not presented
res <- RM(raschNA, se = FALSE)             #Rasch model without standard errors
pres <- person.parameter(res, splineInt = FALSE)
print(pres)                                #person parameteres round to 5 digits
summary(pres)

Run the code above in your browser using DataLab