This function computes the parameter estimates of a Rasch model for binary item responses by using CML estimation.
RM(X, W, se = TRUE, sum0 = TRUE, etaStart)
Returns an object of class dRm, Rm, eRm
and contains the log-likelihood value, the parameter estimates and their standard errors.
Conditional log-likelihood.
Number of iterations.
Number of parameters.
See code
output in nlm
.
Estimated basic item difficulty parameters.
Standard errors of the estimated basic item parameters.
Estimated item (easiness) parameters.
Standard errors of item parameters.
Hessian matrix if se = TRUE
.
Design matrix.
Data matrix.
Dichotomized data matrix.
The matched call.
Input 0/1 data matrix or data frame; rows represent individuals, columns represent items. Missing values are inserted as NA
.
Design matrix for the Rasch model. If omitted, the function will compute W automatically.
If TRUE
, the standard errors are computed.
If TRUE
, the parameters are normed to sum-0 by specifying
an appropriate W
. If FALSE
, the first parameter is restricted to 0.
A vector of starting values for the eta parameters can be specified. If missing, the 0-vector is used.
Patrick Mair, Reinhold Hatzinger
For estimating the item parameters the CML method is used.
Available methods for RM-objects are:
print
, coef
, model.matrix
,
vcov
, summary
, logLik
, person.parameter
, LRtest
,
Waldtest
, plotICC
, plotjointICC
.
Fischer, G. H., and Molenaar, I. (1995). Rasch Models - Foundations, Recent Developements, and Applications. Springer.
Mair, P., and Hatzinger, R. (2007). Extended Rasch modeling: The eRm package for the application of IRT models in R. Journal of Statistical Software, 20(9), 1-20.
Mair, P., and Hatzinger, R. (2007). CML based estimation of extended Rasch models with the eRm package in R. Psychology Science, 49, 26-43.
RSM
,PCM
, LRtest
, Waldtest
# Rasch model with beta.1 restricted to 0
res <- RM(raschdat1, sum0 = FALSE)
res
summary(res)
res$W #generated design matrix
# Rasch model with sum-0 beta restriction; no standard errors computed
res <- RM(raschdat1, se = FALSE, sum0 = TRUE)
res
summary(res)
res$W #generated design matrix
#Rasch model with missing values
res <- RM(raschdat2)
res
summary(res)
Run the code above in your browser using DataLab