Estimated basic item difficulty parameters (item and category parameters).
se.eta
Standard errors of the estimated basic item parameters.
betapar
Estimated item-category (easiness) parameters.
se.beta
Standard errors of item parameters.
hessian
Hessian matrix if se = TRUE.
W
Design matrix.
X
Data matrix.
X01
Dichotomized data matrix.
call
The matched call.
Arguments
X
Input data matrix or data frame with item responses (starting from 0); rows represent individuals, columns represent items. Missing values are inserted as NA.
W
Design matrix for the RSM. If omitted, the function will compute W automatically.
se
If TRUE, the standard errors are computed.
sum0
If TRUE, the parameters are normed to sum-0 by specifying
an appropriate W. If FALSE, the first parameter is restricted to 0.
etaStart
A vector of starting values for the eta parameters can be specified. If missing, the 0-vector is used.
Author
Patrick Mair, Reinhold Hatzinger
Details
The design matrix approach transforms the RSM into a partial credit model
and estimates the corresponding basic parameters by using CML.
Available methods for RSM-objects are print, coef, model.matrix,
vcov, summary, logLik, person.parameters, plotICC, LRtest.
References
Fischer, G. H., and Molenaar, I. (1995). Rasch Models - Foundations,
Recent Developements, and Applications. Springer.
Mair, P., and Hatzinger, R. (2007). Extended Rasch modeling: The eRm package for the application of IRT models in R. Journal of Statistical Software, 20(9), 1-20.
Mair, P., and Hatzinger, R. (2007). CML based estimation of extended Rasch models with the eRm package in R. Psychology Science, 49, 26-43.