data(gcp2x2)
tabucol<-subset(gcp2x2, alg!="TSinN1")
tabucol$alg<-tabucol$alg[drop=TRUE]
eafplot(time+best~run,data=tabucol,subset=tabucol$inst=="DSJC500.5")
eafplot(time+best~run|inst,groups=alg,data=gcp2x2)
eafplot(time+best~run|inst,groups=alg,data=gcp2x2,
percentiles=c(0,50,100),include.extremes=TRUE,
cex=1.4, lty=c(2,1,2),lwd=c(2,2,2),
col=c("black","blue","grey50"))
A1 <- read.data.sets(file.path(system.file(package = "eaf"), "extdata", "ALG_1_dat"))
A2 <- read.data.sets(file.path(system.file(package = "eaf"), "extdata", "ALG_2_dat"))
eafplot(A1, A2, percentiles = c(50))
eafplot(list(A1 = A1, A2 = A2), percentiles = c(50))
dev.copy2pdf(file = "eaf.pdf", onefile = TRUE, width = 5, height = 4)
## Using extra.points
data(HybridGA)
data(SPEA2relativeVanzyl)
eafplot(SPEA2relativeVanzyl, percentiles = c(25, 50, 75),
xlab = expression(C[E]), ylab = "Total switches", xlim = c(320, 400),
extra.points = HybridGA$vanzyl, extra.legend = "Hybrid GA")
data(SPEA2relativeRichmond)
eafplot (SPEA2relativeRichmond, percentiles = c(25, 50, 75),
xlab = expression(C[E]), ylab = "Total switches",
xlim = c(90, 140), ylim = c(0, 25),
extra.points = HybridGA$richmond, extra.lty = "dashed",
extra.legend = "Hybrid GA")
data(SPEA2minstoptimeRichmond)
SPEA2minstoptimeRichmond[,2] <- SPEA2minstoptimeRichmond[,2] / 60
eafplot (SPEA2minstoptimeRichmond, xlab = expression(C[E]),
ylab = "Minimum idle time (minutes)",
las = 1, log = "y", ymaximise = TRUE, main = "SPEA2 (Richmond)")Run the code above in your browser using DataLab