easy.glmnet (version 1.0)
Functions to Simplify the Use of 'glmnet' for Machine Learning
Description
Provides several functions to simplify using the 'glmnet' package: converting data frames into matrices ready for 'glmnet'; b) imputing missing variables multiple times; c) fitting and applying prediction models straightforwardly; d) assigning observations to folds in a balanced way; e) cross-validate the models; f) selecting the most representative model across imputations and folds; and g) getting the relevance of the model regressors; as described in several publications: Solanes et al. (2022) , Palau et al. (2023) , Sobregrau et al. (2024) .