Last chance! 50% off unlimited learning
Sale ends in
multivariateConditions
is simply an accessor for themultivariateConditions
slot of aCountDataSet
objectplotDispLSD
is a function similar to
plotDispEsts
that adds a density estimate as a colored heatmap from grey (few) to yellow
(many).plotDispersionEstimates
offers the functionality to plot
the dispersion estimate as described in the multivariateConditions(obj)
plotDispLSD(obj, name = NULL, ymin,
linecol = "#00000080", xlab = "mean of normalized counts",
ylab = "dispersion", log = "xy", cex = 0.45, ...)
plotDispersionEstimates(obj,cond,log,...)
CountDataSet
.plot.default
parameter.plot.default
.fitInfo
function.plot.default
parameter.plot.default
parameter.multivariateConditions
returns a boolean describing
whether the data to analyze is multivariate or notplotDispLSD
and plotDispersionEstimates
CountDataSet
plotDispEsts
# these are helper function for the DESeq package
# refer to its vignette first
cds <- newCountDataSet(countData,conditions)
cds <- estimateSizeFactors(cds)
cds <- estimateDispersions(cds)
mVar <- multivariateConditions(cds)
plotDispersionEstimates(cds,conditions[1])
Run the code above in your browser using DataLab