# NOT RUN {
data = quarterly_flights
alluvial_long( data, key = qu, value = mean_arr_delay, id = tailnum, fill_by = 'last_variable' )
# }
# NOT RUN {
# more flow coloring variants ------------------------------------
alluvial_long( data, key = qu, value = mean_arr_delay, id = tailnum, fill_by = 'first_variable' )
alluvial_long( data, key = qu, value = mean_arr_delay, id = tailnum, fill_by = 'all_flows' )
alluvial_long( data, key = qu, value = mean_arr_delay, id = tailnum, fill_by = 'value' )
# color by additional variable carrier ---------------------------
alluvial_long( data, key = qu, value = mean_arr_delay, fill = carrier, id = tailnum )
# use same color coding for flows and y levels -------------------
palette = c('green3', 'tomato')
alluvial_long( data, qu, mean_arr_delay, tailnum, fill_by = 'value'
, col_vector_flow = palette
, col_vector_value = palette )
# reorder levels ------------------------------------------------
alluvial_long( data, qu, mean_arr_delay, tailnum, fill_by = 'first_variable'
, order_levels_value = c('on_time', 'late') )
alluvial_long( data, qu, mean_arr_delay, tailnum, fill_by = 'first_variable'
, order_levels_key = c('Q4', 'Q3', 'Q2', 'Q1') )
require(dplyr)
require(magrittr)
order_by_carrier_size = data <!-- %>% -->
group_by(carrier) <!-- %>% -->
count() <!-- %>% -->
arrange( desc(n) ) <!-- %>% -->
.[['carrier']]
alluvial_long( data, qu, mean_arr_delay, tailnum, carrier
, order_levels_fill = order_by_carrier_size )
# }
Run the code above in your browser using DataLab