df = mtcars2[, ! names(mtcars2) %in% 'ids' ]
 m = randomForest::randomForest( disp ~ ., df)
 imp = m$importance
 pred = get_pdp_predictions(df, imp
                            , m
                            , degree = 3
                            , bins = 5)
# parallel processing --------------------------
if (FALSE) {
 future::plan("multisession")
 
 # note that we have to pass the predict method via .f_predict otherwise
 # it will not be available in the worker's environment.
 
 pred = get_pdp_predictions(df, imp
                            , m
                            , degree = 3
                            , bins = 5,
                            , parallel = TRUE
                            , .f_predict = randomForest:::predict.randomForest)
}
Run the code above in your browser using DataLab