Learn R Programming

easycensus

Extracting desired data using the proper Census variable names can be time-consuming. This package takes the pain out of that process.

The use case is best illustrated by an example. Suppose you want age-by-race information at the tract level. Unfortunately, the Census Bureau doesn’t publish a specific age-by-race table. You could build one yourself from public-use microdata, but that lacks tract-level geographic information, for privacy reasons. So you are left trying to find an existing Census product that you can extract age-by-race information from.

Unless you’re a Census pro, you won’t know what exactly what is off the top of your head. But suppose you know you’d like to get the data from the decennial census, since it covers the whole nation and asks about age and race. easycensus provides the cens_find_dec() function to help you locate exactly which decennial census table to use to get the data you want.

library(easycensus)

cens_find_dec(age, race)
#> 
#> ── Top 2 matching tables ───────────────────────────────────────────────────────
#> 
#>  P12  - SEX BY AGE
#> Surveys / Files:
#> ✔ Decennial / Summary File 1
#> Parsed variables:
#> • sex
#> • age
#> • race_ethnicity
#> Example values:
#> • female / 45 to 49 years / black or african american alone
#> • female / 20 years / two or more races
#> • male / 55 to 59 years / american indian and alaska native alone
#> 
#>  PCT12  - SEX BY AGE
#> Surveys / Files:
#> ✔ Decennial / Summary File 1
#> Parsed variables:
#> • sex
#> • age
#> • race_ethnicity
#> Example values:
#> • female / 70 years / total
#> • female / 85 years / native hawaiian and other pacific islander alone
#> • female / 30 years / two or more races

We can see right away that our best bet is either table P12 or table PCT12, depending on whether we want age in 5-year groups or down to individual years. Let’s say you’re OK with the five-year bins. Then all you need to do to get your data is to call cens_get_dec().

d_cens = cens_get_dec("P12", "tract", state="AK", county="Nome")
print(d_cens)
#> # A tibble: 960 × 7
#>    GEOID       NAME                    variable value sex   age   race_ethnicity
#>    <chr>       <chr>                   <chr>    <dbl> <fct> <fct> <fct>         
#>  1 02180000100 Census Tract 1, Nome C… P012002   3053 male  total total         
#>  2 02180000100 Census Tract 1, Nome C… P012003    359 male  unde… total         
#>  3 02180000100 Census Tract 1, Nome C… P012004    318 male  5 to… total         
#>  4 02180000100 Census Tract 1, Nome C… P012005    294 male  10 t… total         
#>  5 02180000100 Census Tract 1, Nome C… P012006    165 male  15 t… total         
#>  6 02180000100 Census Tract 1, Nome C… P012007    130 male  18 a… total         
#>  7 02180000100 Census Tract 1, Nome C… P012008     53 male  20 y… total         
#>  8 02180000100 Census Tract 1, Nome C… P012009     47 male  21 y… total         
#>  9 02180000100 Census Tract 1, Nome C… P012010    150 male  22 t… total         
#> 10 02180000100 Census Tract 1, Nome C… P012011    204 male  25 t… total         
#> # ℹ 950 more rows

Once you’ve gotten your labeled data, it’s easy to marginalize out the unneeded sex variable. You can either use group_by() and summarize() as usual, or you can use the cens_margin_to() function in easycensus. This has the added advantage of automatically handling margins of error for ACS data.

library(dplyr)

d_cens = d_cens %>%
    # Drop table margins. Can also use `drop_total=TRUE` in `get_dec_table()`
    filter(age != "total", race_ethnicity != "total") %>%
    cens_margin_to(age, race=race_ethnicity)
print(d_cens)
#> # A tibble: 414 × 5
#>    GEOID       NAME                                     age          race  value
#>    <chr>       <chr>                                    <fct>        <fct> <dbl>
#>  1 02180000100 Census Tract 1, Nome Census Area, Alaska 10 to 14 ye… amer…   524
#>  2 02180000100 Census Tract 1, Nome Census Area, Alaska 10 to 14 ye… asia…     1
#>  3 02180000100 Census Tract 1, Nome Census Area, Alaska 10 to 14 ye… blac…     1
#>  4 02180000100 Census Tract 1, Nome Census Area, Alaska 10 to 14 ye… hisp…     3
#>  5 02180000100 Census Tract 1, Nome Census Area, Alaska 10 to 14 ye… nati…     0
#>  6 02180000100 Census Tract 1, Nome Census Area, Alaska 10 to 14 ye… some…     0
#>  7 02180000100 Census Tract 1, Nome Census Area, Alaska 10 to 14 ye… two …    23
#>  8 02180000100 Census Tract 1, Nome Census Area, Alaska 10 to 14 ye… whit…    11
#>  9 02180000100 Census Tract 1, Nome Census Area, Alaska 10 to 14 ye… whit…    10
#> 10 02180000100 Census Tract 1, Nome Census Area, Alaska 15 to 17 ye… amer…   293
#> # ℹ 404 more rows

Finally, you might want to simplify the age and race labels, since they are kind of verbose. easycensus provides a set of tidy_*() functions to assist with this.

d_cens %>%
    mutate(race = tidy_race(race),
           tidy_age_bins(age))
#> # A tibble: 414 × 7
#>    GEOID       NAME                            age   race  value age_from age_to
#>    <chr>       <chr>                           <fct> <fct> <dbl>    <dbl>  <dbl>
#>  1 02180000100 Census Tract 1, Nome Census Ar… 10 t… aian    524       10     14
#>  2 02180000100 Census Tract 1, Nome Census Ar… 10 t… asian     1       10     14
#>  3 02180000100 Census Tract 1, Nome Census Ar… 10 t… black     1       10     14
#>  4 02180000100 Census Tract 1, Nome Census Ar… 10 t… hisp      3       10     14
#>  5 02180000100 Census Tract 1, Nome Census Ar… 10 t… nhpi      0       10     14
#>  6 02180000100 Census Tract 1, Nome Census Ar… 10 t… other     0       10     14
#>  7 02180000100 Census Tract 1, Nome Census Ar… 10 t… two      23       10     14
#>  8 02180000100 Census Tract 1, Nome Census Ar… 10 t… white    11       10     14
#>  9 02180000100 Census Tract 1, Nome Census Ar… 10 t… whit…    10       10     14
#> 10 02180000100 Census Tract 1, Nome Census Ar… 15 t… aian    293       15     17
#> # ℹ 404 more rows

Dive into the reference to learn more!

Installation

You can install the released version of easycensus from CRAN with:

install.packages("easycensus")

Or install the development version from GitHub with:

# install.packages("devtools")
devtools::install_github("CoryMcCartan/easycensus")

Copy Link

Version

Install

install.packages('easycensus')

Monthly Downloads

233

Version

1.1.3

License

MIT + file LICENSE

Issues

Pull Requests

Stars

Forks

Maintainer

Cory McCartan

Last Published

February 20th, 2025

Functions in easycensus (1.1.3)

cens_geo

Construct a Geography Specification for Census Data
easycensus-package

easycensus: Quickly Find, Extract, and Marginalize U.S. Census Tables
cens_get_dec

Download data from a decennial census or ACS table
cens_parse_tables

Attempt to Parse Tables from a Census API
cens_margin_to

Helper function to sum over nuisance variables
cens_find

Find a decennial or ACS census table with variables of interest
get_est

Extract estimates, standard errors, and margins of error
cens_auth

Authorize use of the Census API
est_prop

Specialized margin-of-error calculations
estimate

Estimate class
tidiers

Tidy labels in census tables
format.estimate

Format an estimate
estimate-vctrs

Internal vctrs methods
tables

Parsed Census SF1 and ACS Tables