# NOT RUN {
# data represent weights of an Angus cow at ages from 8 to 108 months (Kaps and Lamberson, 2009)
weight=c(280,340,430,480,550,580,590,600,590,600)
age=c(8,12,24,36,48,60,72,84,96,108)
data1=data.frame(age, weight)
# linear
nlsplot(data1, model=1)
# quadratic
nlsplot(data1, model=2)
# linear plateau
nlsplot(data1, model=3)
# quadratic plateau
nlsplot(data1, model=4)
# two linear
nlsplot(data1, model=5, start=c(250,6,2,50))
# exponential
nlsplot(data1, model=6, start=c(250,0.05))
# logistic
nlsplot(data1, model=7, start=c(600,4,0.05))
# van bertalanffy
nlsplot(data1, model=8, start=c(600,2,0.05))
# brody
nlsplot(data1, model=9, start=c(600,4,0.05))
# gompertz
nlsplot(data1, model=10, start=c(600,4,0.05))
# describe the growth of Zagorje turkeys (Kaps and Lamberson, 2009)
weight=c(44,66,100,150,265,370,455,605,770)
age=c(1,7,14,21,28,35,42,49,56)
data2=data.frame(age,weight)
# two linear
nlsplot(data2, model=5, start=c(25,6,10,20))
# using segmented regression to estimate a plateau
# the requirement for the methionine in gain of turkey poults (Kaps and Lamberson, 2009)
methionine=c(80,85,90,95,100,105,110,115,120)
gain=c(102,115,125,133,140,141,142,140,142)
data3=data.frame(methionine, gain)
# linear
nlsplot(data3, model=1)
# quadratic
nlsplot(data3, model=2)
# linear plateau
nlsplot(data3, model=3)
# quadratic plateau
nlsplot(data3, model=4)
# lactation curve
milk=c(25,24,26,28,30,31,27,26,25,24,23,24,
22,21,22,20,21,19,18,17,18,18,16,17,15,16,14)
days=c(15,15,15,75,75,75,135,135,135,195,195,195,
255,255,255,315,315,315,375,375,375,435,435,435,495,495,495)
data4=data.frame(days,milk)
nlsplot(data4, model=11, start=c(16,0.25,0.004))
# ruminal degradation
time=c(2,6,9,24,48,72,96)
deg=c(20,33,46,55,66,72,76)
data5=data.frame(time,deg)
nlsplot(data5, model=12)
# logistic bi-compartmental (gas production)
time=c(0,12,24,36,48,60,72,84,96,108,120,144,168,192)
gas=c(0.002,3.8,8,14.5,16,16.5,17,17.4,17.9,18.1,18.8,19,19.2,19.3)
data6=data.frame(time,gas)
nlsplot(data6, model=13, start=c(19,4,0.025,0.004,5))
# various growth curves
weightx1=c(280,340,430,480,550,580,590,600,590,600)
weightx2=c(278,330,421,450,520,540,551,581,579,580)
weightx3=c(291,368,460,499,565,572,573,572,573,573)
age=c(8,12,24,36,48,60,72,84,96,108)
data7=data.frame(age, weightx1,weightx2,weightx3)
# logistic
nlsplot(data7, model=7, start=c(600,4,0.05), position=9)
# }
Run the code above in your browser using DataLab