powered by
This function builds m individual Efficiency Analysis Trees in a forest structure.
m
RFEAT(data, x, y, numStop = 5, m = 50, s_mtry = "BRM", na.rm = TRUE)
A RFEAT object containing:
RFEAT
data
df: data frame containing the variables in the model.
df
x: input indexes in data.
x
y: output indexes in data.
y
input_names: input variable names.
input_names
output_names: output variable names.
output_names
row_names: rownames in data.
row_names
control
numStop: numStop hyperparameter value.
numStop
m: m hyperparameter value.
s_mtry: s_mtry hyperparameter value.
s_mtry
na.rm: na.rm hyperparameter value.
na.rm
forest: list containing the individual EAT models.
forest
list
error: Out-of-Bag error at the forest.
error
OOB: list containing Out-of-Bag set for each tree.
OOB
data.frame or matrix containing the variables in the model.
data.frame
matrix
Column input indexes in data.
Column output indexes in data.
Minimum number of observations in a node for a split to be attempted.
Number of trees to be built.
Number of variables randomly sampled as candidates at each split. The available options are:
"BRM": in / 3
"BRM"
in / 3
"DEA1": (t.obs / 2) - out
"DEA1"
(t.obs / 2) - out
"DEA2": (t.obs / 3) - out
"DEA2"
(t.obs / 3) - out
"DEA3": t.obs - 2 * out
"DEA3"
t.obs - 2 * out
"DEA4": min(t.obs / out, (t.obs / 3) - out)
"DEA4"
min(t.obs / out, (t.obs / 3) - out)
Any integer
logical. If TRUE, NA rows are omitted.
logical
TRUE
NA
# \donttest{ simulated <- X2Y2.sim(N = 50, border = 0.1) RFmodel <- RFEAT(data = simulated, x = c(1,2), y = c(3, 4), numStop = 5, m = 50, s_mtry = "BRM", na.rm = TRUE) # }
Run the code above in your browser using DataLab