library(ebdbNet)
tmp <- runif(1) ## Initialize random number generator
set.seed(125214) ## Save seed
## Simulate data
R <- 5
T <- 10
P <- 10
simData <- simFunc(R, T, P, v = rep(10, P), perc = 0.10)
Dtrue <- simData$Dtrue
y <- simData$y
## Simulate 8 inputs
u <- vector("list", R)
M <- 8
for(r in 1:R) {
u[[r]] <- matrix(rnorm(M*T), nrow = M, ncol = T)
}
####################################################
## Run EB-DBN without hidden states
####################################################
## Choose alternative value of K using hankel if hidden states are to be estimated
## K <- hankel(y)$dim
## Run algorithm
net <- ebdbn(input = u, y, K = 0, conv.1 = 0.15, conv.2 = 0.10, conv.3 = 0.10)
## Calculate sensitivities, specificities, and precisions of D matrix
## Use z-score significance level of 95%
z <- zCutoff(net$DPost, net$DvarPost)
sens.95 <- sensitivity(Dtrue, z$z95)
Run the code above in your browser using DataLab