Learn R Programming

ebmc (version 1.0.1)

Ensemble-Based Methods for Class Imbalance Problem

Description

Four ensemble-based methods (SMOTEBoost, RUSBoost, UnderBagging, and SMOTEBagging) for class imbalance problem are implemented for binary classification. Such methods adopt ensemble methods and data re-sampling techniques to improve model performance in presence of class imbalance problem. One special feature offers the possibility to choose multiple supervised learning algorithms to build weak learners within ensemble models. References: Nitesh V. Chawla, Aleksandar Lazarevic, Lawrence O. Hall, and Kevin W. Bowyer (2003) , Chris Seiffert, Taghi M. Khoshgoftaar, Jason Van Hulse, and Amri Napolitano (2010) , R. Barandela, J. S. Sanchez, R. M. Valdovinos (2003) , Shuo Wang and Xin Yao (2009) , Yoav Freund and Robert E. Schapire (1997) .

Copy Link

Version

Install

install.packages('ebmc')

Monthly Downloads

230

Version

1.0.1

License

GPL (>= 3)

Maintainer

Hsiang Hao

Last Published

January 10th, 2022

Functions in ebmc (1.0.1)

rus

Implementation of RUSBoost
ub

Implementation of UnderBagging
sbo

Implementation of SMOTEBoost
adam2

Implementation of AdaBoost.M2
measure

Calculating Performance Measurement in Class Imbalance Problem
sbag

Implementation of SMOTEBagging
predict.modelBst

Predict Method for modelBst Object
predict.modelBag

Predict Method for modelBag Object