# Example 1: Binary data with automatic grouping (Ebrahim-Farrington test)
set.seed(123)
n <- 500
x <- rnorm(n)
linpred <- 0.5 + 1.2 * x
prob <- 1 / (1 + exp(-linpred))
y <- rbinom(n, 1, prob)
# Fit logistic regression
model <- glm(y ~ x, family = binomial())
predicted_probs <- fitted(model)
# Perform Ebrahim-Farrington test with 10 groups
result <- ef.gof(y, predicted_probs, G = 10)
print(result)
# Example 2: Compare with different number of groups
result_4 <- ef.gof(y, predicted_probs, G = 4)
result_20 <- ef.gof(y, predicted_probs, G = 20)
# Example 3: Grouped data (original Farrington test)
# Note: This requires actual grouped data with trials > 1
# Simulated grouped data
n_groups <- 50
m_trials <- sample(5:20, n_groups, replace = TRUE)
x_grouped <- rnorm(n_groups)
linpred_grouped <- -0.5 + 1.0 * x_grouped
prob_grouped <- 1 / (1 + exp(-linpred_grouped))
y_grouped <- rbinom(n_groups, m_trials, prob_grouped)
# Fit model for grouped data
data_grouped <- data.frame(successes = y_grouped, trials = m_trials, x = x_grouped)
model_grouped <- glm(cbind(successes, trials - successes) ~ x,
data = data_grouped, family = binomial())
predicted_probs_grouped <- fitted(model_grouped)
# Original Farrington test
result_grouped <- ef.gof(y_grouped, predicted_probs_grouped,
model = model_grouped, m = m_trials)
print(result_grouped)
Run the code above in your browser using DataLab