Learn R Programming

⚠️There's a newer version (1.1-18) of this package.Take me there.

ecespa (version 1.1-12)

Functions for Spatial Point Pattern Analysis

Description

Some wrappers, functions and data sets for for spatial point pattern analysis (mainly based on 'spatstat'), used in the book "Introduccion al Analisis Espacial de Datos en Ecologia y Ciencias Ambientales: Metodos y Aplicaciones" and in the papers by De la Cruz et al. (2008) and Olano et al. (2009) .

Copy Link

Version

Install

install.packages('ecespa')

Monthly Downloads

407

Version

1.1-12

License

GPL (>= 2)

Maintainer

Marcelino la Cruz

Last Published

October 25th, 2020

Functions in ecespa (1.1-12)

K012

Tests against 'independent labelling'
LF.gof

Loosmore and Ford Goodness of Fit Test
dixon2002

Dixon (2002) Nearest-neighbor contingency table analysis
pc.estK

Fit the Poisson Cluster Point Process by Minimum Contrast
Kmm

Mark-weighted K-function
quercusvm

Alive and dead oak trees
syrjala

Syrjala's test for the difference between the spatial distributions of two populations
haz.ppp

Easily convert xy data to ppp format
Helianthemum

Spatial point pattern of Helianthemum squamatum adult plants and seedlings
gypsophylous

Spatial point pattern of a plant community
ecespa

Functions for spatial point pattern analysis in ecology
syrjala.data

Syrjala test data
figuras

Artificial point data.
Kmulti.ls

Lotwick's and Silverman's combined estimator of the marked K-function
getis

Neighbourhood density function
sim.poissonc

Simulate Poisson Cluster Process
Kci

Test against non-Poisson (in-)homogeneous models
marksum

Mark-sum measure
Kinhom.log

Simulation envelopes from the fitted values of a logistic model
swamp

Tree Species in a Swamp Forest
p2colasr

P-value for a discrete distribution on small sample data
ecespa-internal

Internal ecespa functions.
ipc.estK

Fit the (In)homogeneous Poisson Cluster Point Process by Minimum Contrast
K1K2

Differences between univariate and bivariate K-functions
seedlings

Cohorts of Helianthemum squamatum seedlings
rIPCP

Simulate Inhomogeneous Poisson Cluster Process