Learn R Programming

echarts4r (version 0.2.0)

e_heatmap: Heatmap

Description

Draw heatmap by coordinates.

Usage

e_heatmap(e, y, z, name = NULL, coord_system = "cartesian2d",
  rm_x = TRUE, rm_y = TRUE, calendar = NULL, ...)

e_heatmap_(e, y, z = NULL, name = NULL, coord_system = "cartesian2d", rm_x = TRUE, rm_y = TRUE, calendar = NULL, ...)

Arguments

e

An echarts4r object as returned by e_charts.

y, z

Coordinates and values.

name

name of the serie.

coord_system

Coordinate system to plot against, takes cartesian2d, geo or calendar.

rm_x, rm_y

Whether to remove x and y axis, only applies if coord_system is not set to cartesian2d.

calendar

The index of the calendar to plot against.

...

Any other option to pass, check See Also section.

See Also

Additional arguments

Examples

Run this code
# NOT RUN {
v <- LETTERS[1:10]
matrix <- data.frame(
  x = sample(v, 300, replace = TRUE), 
  y = sample(v, 300, replace = TRUE), 
  z = rnorm(300, 10, 1),
  stringsAsFactors = FALSE
) %>% 
  dplyr::group_by(x, y) %>% 
  dplyr::summarise(z = sum(z)) %>% 
  dplyr::ungroup()

matrix %>% 
  e_charts(x) %>% 
  e_heatmap(y, z, itemStyle = list(emphasis = list(shadowBlur = 10))) %>% 
  e_visual_map(z)

# calendar   
dates <- seq.Date(as.Date("2017-01-01"), as.Date("2018-12-31"), by = "day")
values <- rnorm(length(dates), 20, 6)

year <- data.frame(date = dates, values = values)

year %>% 
  e_charts(date) %>% 
  e_calendar(range = "2018") %>% 
  e_heatmap(values, coord_system = "calendar") %>% 
  e_visual_map(max = 30)
  
# multiple years
year %>% 
  dplyr::mutate(year = format(date, "%Y")) %>% 
  group_by(year) %>% 
  e_charts(date) %>% 
  e_calendar(range = "2017", top = 40) %>% 
  e_calendar(range = "2018", top = 260) %>% 
  e_heatmap(values, coord_system = "calendar") %>% 
  e_visual_map(max = 30)

# }

Run the code above in your browser using DataLab