Learn R Programming

echarts4r (version 0.4.5)

e_heatmap: Heatmap

Description

Draw heatmap by coordinates.

Usage

e_heatmap(
  e,
  y,
  z,
  bind,
  name = NULL,
  coord_system = "cartesian2d",
  rm_x = TRUE,
  rm_y = TRUE,
  calendar = NULL,
  ...
)

e_heatmap_( e, y, z = NULL, bind = NULL, name = NULL, coord_system = "cartesian2d", rm_x = TRUE, rm_y = TRUE, calendar = NULL, ... )

Arguments

e

An echarts4r object as returned by e_charts or a proxy as returned by echarts4rProxy.

y, z

Coordinates and values.

bind

Binding between datasets, namely for use of e_brush.

name

name of the serie.

coord_system

Coordinate system to plot against, takes cartesian2d, geo or calendar.

rm_x, rm_y

Whether to remove x and y axis, only applies if coord_system is not set to cartesian2d.

calendar

The index of the calendar to plot against.

...

Any other option to pass, check See Also section.

See Also

Examples

Run this code
v <- LETTERS[1:10]
matrix <- data.frame(
  x = sample(v, 300, replace = TRUE),
  y = sample(v, 300, replace = TRUE),
  z = rnorm(300, 10, 1),
  stringsAsFactors = FALSE
) |>
  dplyr::group_by(x, y) |>
  dplyr::summarise(z = sum(z)) |>
  dplyr::ungroup()

matrix |>
  e_charts(x) |>
  e_heatmap(y, z, itemStyle = list(emphasis = list(shadowBlur = 10))) |>
  e_visual_map(z)

# calendar
dates <- seq.Date(as.Date("2017-01-01"), as.Date("2018-12-31"), by = "day")
values <- rnorm(length(dates), 20, 6)

year <- data.frame(date = dates, values = values)

year |>
  e_charts(date) |>
  e_calendar(range = "2018") |>
  e_heatmap(values, coord_system = "calendar") |>
  e_visual_map(max = 30)

# calendar multiple years
year |>
  dplyr::mutate(year = format(date, "%Y")) |>
  group_by(year) |>
  e_charts(date) |>
  e_calendar(range = "2017", top = 40) |>
  e_calendar(range = "2018", top = 260) |>
  e_heatmap(values, coord_system = "calendar") |>
  e_visual_map(max = 30)

# map
quakes |>
  e_charts(long) |>
  e_geo(
    boundingCoords = list(
      c(190, -10),
      c(180, -40)
    )
  ) |>
  e_heatmap(
    lat,
    mag,
    coord_system = "geo",
    blurSize = 5,
    pointSize = 3
  ) |>
  e_visual_map(mag)

# timeline
library(dplyr)

axis <- LETTERS[1:10]
df <- expand.grid(axis, axis)

bind_rows(df, df) |>
  mutate(
    values = runif(n(), 1, 10),
    grp = c(
      rep("A", 100),
      rep("B", 100)
    )
  ) |>
  group_by(grp) |>
  e_charts(Var1, timeline = TRUE) |>
  e_heatmap(Var2, values) |>
  e_visual_map(values)

Run the code above in your browser using DataLab