library(ecoCopula)
library(mvabund)
data(spider)
spiddat = mvabund(spider$abund)
X = data.frame(spider$x)
# Specify increasers and decreasers
increasers = c("Alopacce", "Arctlute", "Arctperi", "Pardnigr", "Pardpull")
decreasers = c("Alopcune", "Alopfabr", "Zoraspin")
# Simulate data
fit.glm = manyglm(spiddat~1, family="negative.binomial")
fit.cord = cord(fit.glm)
simData = extend(fit.cord)
# Simulate data with N=20
fit.glm = manyglm(spiddat~soil.dry, family="negative.binomial", data=X)
fit.cord = cord(fit.glm)
simData = extend(fit.cord, N=20)
# Obtain a manyglm fit from simulated data with N=10 and effect_size=1.5
X$Treatment = rep(c("A","B","C","D"),each=7)
fit_factors.glm = manyglm(spiddat~Treatment, family="negative.binomial", data=X)
effect_mat = effect_alt(fit_factors.glm, effect_size=1.5,
increasers, decreasers, term="Treatment")
fit_factors.cord = cord(fit_factors.glm)
newFit.glm = extend(fit_factors.cord, N=10,
coeffs=effect_mat, do.fit=TRUE)
# Change sampling design
X_new = X
X_new$Treatment[6:7] = c("B","B")
simData = extend(fit_factors.cord, N=NULL,
coeffs=effect_mat, newdata=X_new, n_replicate=5)
Run the code above in your browser using DataLab