# \donttest{
library(ecoCopula)
library(mvabund)
data(spider)
spiddat = mvabund(spider$abund)
X = data.frame(spider$x)
# Specify increasers and decreasers
increasers = c("Alopacce", "Arctlute", "Arctperi", "Pardnigr", "Pardpull")
decreasers = c("Alopcune", "Alopfabr", "Zoraspin")
# Find power for continuous predictor at effect_size=1.5
fit.glm = manyglm(spiddat~bare.sand, family="negative.binomial", data=X)
effect_mat = effect_alt(fit.glm, effect_size=1.5,
increasers, decreasers, term="bare.sand")
fit.cord = cord(fit.glm)
powersim(fit.cord, coeffs=effect_mat, term="bare.sand", nsim=99, ncrit=99, ncores=2)
# Find power for categorical predictor with 4 levels at effect_size=1.5
X$Treatment = rep(c("A","B","C","D"),each=7)
fit_factors.glm = manyglm(spiddat~Treatment, family="negative.binomial", data=X)
effect_mat = effect_alt(fit_factors.glm, effect_size=1.5,
increasers, decreasers, term="Treatment")
fit_factors.cord = cord(fit_factors.glm)
powersim(fit_factors.cord, coeffs=effect_mat, term="Treatment", nsim=99, ncrit=99, ncores=2)
# Change effect size parameterisation
effect_mat = effect_alt(fit_factors.glm, effect_size=1.5,
increasers, decreasers, term="Treatment",
K=c(3,1,2))
powersim(fit_factors.cord, coeffs=effect_mat, term="Treatment", nsim=99, ncrit=99, ncores=2)
# }
Run the code above in your browser using DataLab