# Data to compute dDis, dBD, and dEve
dStates <- EDR_data$EDR1$state_dissim
dTraj <- EDR_data$EDR1$traj_dissim
trajectories <- paste0("T", EDR_data$EDR1$abundance$traj)
states <- EDR_data$EDR1$abundance$state
# Dynamic dispersion taking the first trajectory as reference
dDis(d = dTraj, d.type = "dTraj", trajectories = unique(trajectories),
reference = "T1")
# Dynamic dispersion weighting trajectories by their length
dDis(d = dStates, d.type = "dStates", trajectories = trajectories, states = states,
reference = "T1", w.type = "length")
# Dynamic beta diversity using trajectory dissimilarities
dBD(d = dTraj, d.type = "dTraj", trajectories = unique(trajectories))
# Dynamic evenness
dEve(d = dStates, d.type = "dStates", trajectories = trajectories, states = states)
# Dynamic evenness considering that the 10 first trajectories are three times
# more relevant than the rest
w.values <- c(rep(3, 10), rep(1, length(unique(trajectories))-10))
dEve(d = dTraj, d.type = "dTraj", trajectories = unique(trajectories),
w.type = "precomputed", w.values = w.values)
Run the code above in your browser using DataLab