### Example using demo data with four indicators and five pressures with
# scores for direct as well as combined direct-indirect effects based on
# the template function create_template_sensitivity(). For two
# indicators, sensitivity, adaptive capacity, and their uncertainties are
# provided as general scores, while for the other two, they are based on
# individual traits.
ex_expert_sensitivity
# Calculate only mean sensitivity scores:
calc_sensitivity(
indicators = ex_expert_sensitivity$indicator,
pressures = ex_expert_sensitivity$pressure,
sensitivity_traits = ex_expert_sensitivity[ ,4:8],
adaptive_capacities = NULL, # (default)
uncertainty_sens = NULL, # (default)
uncertainty_ac = NULL, # (default)
method = "mean" # (default)
)
# Calculate mean scores for sensitivity, adaptive capacity and
# associated uncertainties:
calc_sensitivity(
indicators = ex_expert_sensitivity$indicator,
pressures = ex_expert_sensitivity$pressure,
type = ex_expert_sensitivity$type,
sensitivity_traits = ex_expert_sensitivity[ ,4:8],
adaptive_capacities = ex_expert_sensitivity[ ,9:13],
uncertainty_sens = ex_expert_sensitivity[ ,14:18],
uncertainty_ac = ex_expert_sensitivity[ ,19:23]
)
### Example for one indicator and three pressures to evaluate direct
# effects where sensitivity is scored for four individual traits:
ind <- "herring"
press <- c("fishing", "temperature increase", "salinity decrease")
# Create scoring table using the template function:
sens_ac_tbl <- create_template_sensitivity(
indicators = ind,
pressures = press,
type = "direct", # (default)
n_sensitivity_traits = 4,
adaptive_capacity = TRUE, # (default)
mode_adaptive_capacity = "general", # (default)
uncertainty = TRUE, # (default)
mode_uncertainty = "general" # (default)
)
# Rename trait columns:
trait_cols <- paste0("sens_",
c("feeding", "behaviour", "reproduction", "habitat"))
names(sens_ac_tbl)[4:7] <- trait_cols
# Give trait-specific sensitivity scores:
sens_ac_tbl$sens_feeding <- c(0,0,0)
sens_ac_tbl$sens_behaviour <- c(-1,0,-4)
sens_ac_tbl$sens_reproduction <- c(-2,-2,-5)
sens_ac_tbl$sens_habitat <- c(-3,-2,0)
# Give general adaptive capacity and uncertainty scores:
sens_ac_tbl$ac_general <- c(0,0,-1)
sens_ac_tbl$uncertainty_sens <- c(1,1,1)
sens_ac_tbl$uncertainty_ac <- c(1,1,2)
sens_ac_tbl
# Calculate median sensitivity scores (adaptive capacities and
# uncertainties cannot be aggregated further):
calc_sensitivity(
indicators = sens_ac_tbl$indicator,
pressures = sens_ac_tbl$pressure,
sensitivity_traits = sens_ac_tbl[, trait_cols],
adaptive_capacities = sens_ac_tbl$ac_general,
uncertainty_sens = sens_ac_tbl$uncertainty_sens,
uncertainty_ac = sens_ac_tbl$uncertainty_ac,
method = "median"
)
Run the code above in your browser using DataLab