# Using demo output data from the vulnerability() and status() functions:
risk(
vulnerability_results = ex_output_vulnerability_model,
status_results = ex_output_status
)
# \donttest{
### Demo Expert-Based Pathway
# - using the example scoring datasets 'ex_expert_exposure',
# 'ex_expert_sensitivity' and 'ex_expert_status'
# Calculate (mean) exposure score:
exp_expert <- calc_exposure(
pressures = ex_expert_exposure$pressure,
components = ex_expert_exposure[ ,2:5],
uncertainty = ex_expert_exposure[ ,6:9],
method = "mean" # default
)
# Calculate (mean) sensitivity (and adaptive capacity) score:
sens_ac_expert <- calc_sensitivity(
indicators = ex_expert_sensitivity$indicator,
pressures = ex_expert_sensitivity$pressure,
type = ex_expert_sensitivity$type,
sensitivity_traits = ex_expert_sensitivity[ ,4:8],
adaptive_capacities = ex_expert_sensitivity[ ,9:13],
uncertainty_sens = ex_expert_sensitivity[ ,14:18],
uncertainty_ac = ex_expert_sensitivity[ ,19:23],
method = "mean" # default
)
# Calculate (mean) vulnerability score:
vuln_expert <- vulnerability(
exposure_results = exp_expert,
sensitivity_results = sens_ac_expert,
method_vulnerability = "mean", # default
method_uncertainty = "mean" # default
)
# Calculate risk score:
risk(
vulnerability_results = vuln_expert,
status_results = ex_expert_status
)
### Demo Model-Based Pathway
# - using the demo time series 'pressure_ts_baltic' and 'indicator_ts_baltic'
# Model exposure score:
exp_model <- model_exposure(
pressure_time_series = pressure_ts_baltic,
base_years = c(start = 1984, end = 1994),
current_years = c(start = 2010, end = 2016)
)
# Model sensitivity score:
sens_ac_model <- model_sensitivity(
indicator_time_series = indicator_ts_baltic,
pressure_time_series = pressure_ts_baltic,
current_years = c(start = 2010, end = 2016)
)
# Add manually adaptive capacity scores (otherwise zero):
sens_ac_model$adaptive_capacity <- c(rep(1, 8), rep(-1, 8))
# Calculate (mean) vulnerability score:
vuln_model <- vulnerability(
exposure_results = exp_model,
sensitivity_results = sens_ac_model
)
# Calculate status score:
status_model <- status(
indicator_time_series = indicator_ts_baltic,
base_years = c(start = 1984, end = 2010),
current_years = c(start = 2011, end = 2016)
)
# Calculate risk score:
risk(
vulnerability_results = vuln_model,
status_results = status_model
)
# }
Run the code above in your browser using DataLab