# NOT RUN {
# Create an ecospace framework with 15 3-state factor characters
# Can also accept following character types: "numeric", "ord.num", "ord.fac"
nchar <- 15
ecospace <- create_ecospace(nchar = nchar, char.state = rep(3, nchar),
char.type = rep("factor", nchar))
# Single (default) sample produced by redundancy function (with strength = 1):
Sseed <- 5
Smax <- 50
x <- redundancy(Sseed = Sseed, Smax = Smax, ecospace = ecospace)
head(x, 10)
# Plot results, showing order of assembly
# (Seed species in red, next 5 in black, remainder in gray)
# Notice the redundancy model produces an ecospace with discrete clusters of life habits
seq <- seq(nchar)
types <- sapply(seq, function(seq) ecospace[[seq]]$type)
if(any(types == "ord.fac" | types == "factor")) pc <- prcomp(FD::gowdis(x)) else
pc <- prcomp(x)
plot(pc$x, type = "n", main = paste("Redundancy model,\n", Smax, "species"))
text(pc$x[,1], pc$x[,2], labels = seq(Smax), col = c(rep("red", Sseed), rep("black", 5),
rep("slategray", (Smax - Sseed - 5))), pch = c(rep(19, Sseed), rep(21, (Smax - Sseed))),
cex = .8)
# Change strength parameter so new species are 95% identical:
x <- redundancy(Sseed = Sseed, Smax = Smax, ecospace = ecospace, strength = 0.95)
if(any(types == "ord.fac" | types == "factor")) pc <- prcomp(FD::gowdis(x)) else
pc <- prcomp(x)
plot(pc$x, type = "n", main = paste("Redundancy model,\n", Smax, "species"))
text(pc$x[,1], pc$x[,2], labels = seq(Smax), col = c(rep("red", Sseed), rep("black", 5),
rep("slategray", (Smax - Sseed - 5))), pch = c(rep(19, Sseed), rep(21, (Smax - Sseed))),
cex = .8)
# Create 5 samples using multiple nreps and lapply (can be slow)
nreps <- 1:5
samples <- lapply(X = nreps, FUN = redundancy, Sseed = 5, Smax = 50, ecospace)
str(samples)
# }
Run the code above in your browser using DataLab