# NOT RUN {
# }
# NOT RUN {
#Run biomod2 to produce a model prediction
DataSpecies <- read.csv(system.file("external/species/mammals_table.csv", package="biomod2"))
myRespName <- 'GuloGulo'
# the presence/absences data for our species
myResp <- as.numeric(DataSpecies[,myRespName])
# the XY coordinates of species data
myRespXY <- DataSpecies[,c("X_WGS84","Y_WGS84")]
# load the environmental raster layers (could be .img, ArcGIS
# rasters or any supported format by the raster package)
# Environmental variables extracted from Worldclim (bio_3, bio_4,
# bio_7, bio_11 & bio_12)
myExpl = stack( system.file( "external/bioclim/current/bio3.grd",
package="biomod2"),
system.file( "external/bioclim/current/bio4.grd",
package="biomod2"),
system.file( "external/bioclim/current/bio7.grd",
package="biomod2"),
system.file( "external/bioclim/current/bio11.grd",
package="biomod2"),
system.file( "external/bioclim/current/bio12.grd",
package="biomod2"))
myBiomodData <- BIOMOD_FormatingData(resp.var = myResp,
expl.var = myExpl,
resp.xy = myRespXY,
resp.name = myRespName)
myBiomodData
myBiomodOption <- BIOMOD_ModelingOptions()
myBiomodModelOut <- BIOMOD_Modeling(
myBiomodData,
models = c('GLM'),
models.options = myBiomodOption,
NbRunEval=1,
DataSplit=80,
Prevalence=0.5,
VarImport=3,
models.eval.meth = c('TSS','ROC'),
SaveObj = TRUE,
rescal.all.models = TRUE,
do.full.models = FALSE,
modeling.id = paste(myRespName,"FirstModeling",sep=""))
myBiomodModelOut
myBiomodModelEval <- get_evaluations(myBiomodModelOut)
myBiomodEM <- BIOMOD_EnsembleModeling(
modeling.output = myBiomodModelOut,
chosen.models = 'all',
em.by='all',
eval.metric = c('TSS'),
eval.metric.quality.threshold = c(0.7),
prob.mean = TRUE,
prob.cv = TRUE,
prob.ci = TRUE,
prob.ci.alpha = 0.05,
prob.median = TRUE,
committee.averaging = TRUE,
prob.mean.weight = TRUE,
prob.mean.weight.decay = 'proportional' )
myBiomodEM
myBiomodProj <- BIOMOD_Projection(
modeling.output = myBiomodModelOut,
new.env = myExpl,
proj.name = 'current',
selected.models = 'all',
binary.meth = 'TSS',
compress = 'xz',
clamping.mask = FALSE,
output.format = '.grd')
myBiomodProj
plot(myBiomodProj, str.grep = 'GLM')
#
Pred <-get_predictions(myBiomodProj)
Sp.occ.xy <- DataSpecies[DataSpecies[,5]==1,2:3]
Percentage <- 7
binary.model<-ecospat.binary.model (Pred, Sp.occ.xy, Percentage)
plot(binary.model)
# }
Run the code above in your browser using DataLab