# \donttest{
  #Loading species occurence data and remove empty communities
  data(ecospat.testData)
  testData <- ecospat.testData[,c(24,34,43,45,48,53,55:58)]
  sp.data <- testData[which(rowSums(testData)>2), sort(colnames(testData))]
  
  #Loading environmental data
  env.data <- ecospat.testData[which(rowSums(testData)>2),4:8]
  
  #Coordinates for all sites
  xy <- ecospat.testData[which(rowSums(testData)>2),2:3]
  
  #Running all the models for all species
  myCCV.Models <- ecospat.CCV.modeling(sp.data = sp.data,
                                       env.data = env.data,
                                       xy = xy,
                                       NbRunEval = 2,
                                       minNbPredictors = 10,
                                       VarImport = 3)
                                       
  #Calculating the probabilistic community metrics
  metrics = c('SR.deviation','community.AUC','probabilistic.Sorensen','Max.Sorensen')
  myCCV.Eval.prob <- ecospat.CCV.communityEvaluation.prob(
          ccv.modeling.data = myCCV.Models, 
          community.metrics = metrics)
          
  #Thresholding all the predictions and calculating the community evaluation metrics
  myCCV.communityEvaluation.bin <- ecospat.CCV.communityEvaluation.bin(
        ccv.modeling.data = myCCV.Models, 
        thresholds = c('MAX.KAPPA', 'MAX.ROC','PS_SDM'),
        community.metrics= c('SR.deviation','Sorensen'),
        parallel = FALSE,
        cpus = 4)
        
  #removing files on disk
  unlink(list.files(pattern=myCCV.Models$modeling.id))
  unlink(myCCV.Models$modeling.id,recursive=TRUE)
          
# }
Run the code above in your browser using DataLab