#Description of entities and surveys
entities <- c("1","1","1","1","2","2","2","2","3","3","3","3")
surveys <- c(1,2,3,4,1,2,3,4,1,2,3,4)
#Raw data table
xy<-matrix(0, nrow=12, ncol=2)
xy[2,2]<-1
xy[3,2]<-2
xy[4,2]<-3
xy[5:6,2] <- xy[1:2,2]
xy[7,2]<-1.5
xy[8,2]<-2.0
xy[5:6,1] <- 0.25
xy[7,1]<-0.5
xy[8,1]<-1.0
xy[9:10,1] <- xy[5:6,1]+0.25
xy[11,1] <- 1.0
xy[12,1] <-1.5
xy[9:10,2] <- xy[5:6,2]
xy[11:12,2]<-c(1.25,1.0)
d <- dist(xy)
# Defines trajectories
x <- defineTrajectories(d, entities, surveys)
# Assessment of dynamic variation and individual trajectory contributions
dynamicVariation(x)
# Variation decomposition (entity, temporal and interaction) for synchronous
# trajectories:
variationDecomposition(x)
# check the correspondence with internal variation
sum(variationDecomposition(x)[c("time", "interaction"),"ss"])
sum(trajectoryInternalVariation(x)$internal_ss)
Run the code above in your browser using DataLab