50% off: Unlimited data and AI learning.
State of Data and AI Literacy Report 2025

ecr (version 2.1.1)

mutGauss: Gaussian mutator.

Description

Default Gaussian mutation operator known from Evolutionary Algorithms. This mutator is applicable only for representation="float". Given an individual xRl this mutator adds a Gaussian distributed random value to each component of x, i.~e., x~i=xi+σN(0,1).

Usage

mutGauss(ind, p = 1L, sdev = 0.05, lower, upper)

Value

[numeric]

Arguments

ind

[numeric]
Numeric vector / individual to mutate.

p

[numeric(1)]
Probability of mutation for the gauss mutation operator.

sdev

[numeric(1)
Standard deviance of the Gauss mutation, i. e., the mutation strength.

lower

[numeric]
Vector of minimal values for each parameter of the decision space.

upper

[numeric]
Vector of maximal values for each parameter of the decision space.

References

[1] Beyer, Hans-Georg & Schwefel, Hans-Paul (2002). Evolution strategies. Kluwer Academic Publishers.

[2] Mateo, P. M. & Alberto, I. (2011). A mutation operator based on a Pareto ranking for multi-objective evolutionary algorithms. Springer Science+Business Meda. 57.

See Also

Other mutators: mutBitflip(), mutInsertion(), mutInversion(), mutJump(), mutPolynomial(), mutScramble(), mutSwap(), mutUniform()