estimateDisp(y, design=NULL, prior.df=NULL, trend.method="locfit", span=NULL, min.row.sum=5, grid.length=21, grid.range=c(-10,10), robust=FALSE, winsor.tail.p=c(0.05,0.1), tol=1e-06)
DGEList
objectprior.n
."none"
, "movingave"
, "loess"
and "locfit"
.prior.df
be robustified against outliers?prior.df
.optimize
object
with the following added components:
estimateCommonDisp
and estimateTagwiseDisp
. If a design matrix is given, it then calculates the adjusted profile log-likelihood for each gene (tag) and then maximize it. It is similar to the functions estimateGLMCommonDisp
, estimateGLMTrendedDisp
and estimateGLMTagwiseDisp
.
estimateCommonDisp
, estimateTagwiseDisp
, estimateGLMCommonDisp
, estimateGLMTrendedDisp
, estimateGLMTagwiseDisp
# True dispersion is 1/5=0.2
y <- matrix(rnbinom(1000, mu=10, size=5), ncol=4)
group <- c(1,1,2,2)
design <- model.matrix(~group)
d <- DGEList(counts=y, group=group)
d1 <- estimateDisp(d)
d2 <- estimateDisp(d, design)
Run the code above in your browser using DataLab