phi / (phi+1)
) for a given tag/gene - maximized to find the smoothed (moderated) estimate of the dispersion parameterweightedCondLogLikDerDelta(y, delta, tag, prior.n=10, ntags=nrow(y[[1]]), der=0)
phi / (phi+1)
)parameter of negative binomial10
means that the common likelihood is given 10 times the weight of the individual tag/gene's likelihood in the estimation of the tag/genewise dispersionphi
scale, and this value is the estimate of the smoothed (moderated) dispersion parameter for that particular tag. The delta scale for convenience (delta is bounded between 0 and 1).
counts<-matrix(rnbinom(20,size=1,mu=10),nrow=5)
d<-DGEList(counts=counts,group=rep(1:2,each=2),lib.size=rep(c(1000:1001),2))
y<-splitIntoGroups(d)
ll1<-weightedCondLogLikDerDelta(y,delta=0.5,tag=1,prior.n=10,der=0)
ll2<-weightedCondLogLikDerDelta(y,delta=0.5,tag=1,prior.n=10,der=1)
Run the code above in your browser using DataLab