Learn R Programming

eefAnalytics (version 1.0.6)

caceMSTBoot: CACE Analysis of Multisite Randomised Education Trials.

Description

caceMSTBoot performs exploratory CACE analysis of multisite randomised education trials.

Usage

caceMSTBoot(formula, random, intervention, compliance, nBoot, data)

Arguments

formula
the model to be analysed. It is of the form y ~ x1+x2+.... Where y is the outcome variable and Xs are the predictors.
random
a string variable specifying the "clustering variable" as contained in the data. See example below
intervention
a string variable specifying the "intervention variable" as appeared in the formula. See example below
compliance
a string variable specifying the "compliance variable" as contained in the data. The data must be in percentages ranging from 0 - 100.
nBoot
number of bootstraps required to generate bootstrap confidence interval. Default is NULL.
data
data frame containing the data to be analysed.

Value

S3 object; a list consisting of
  • CACE. Estimates of CACE adjusted effect sizes based on pre-specified thresholds. Only produced for threshold with at least 50
  • Compliers. Percentage of pupils that achieved a pre-specified threshold of compliance.

Examples

Run this code
if(interactive()){

data(mstData)

########################################################
## MLM analysis of multisite trials + 1.96SE ##
########################################################

output1 <- mstFREQ(Posttest~ Intervention+Prettest,random="School",
		intervention="Intervention",data=mstData)


### Fixed effects
beta <- output1$Beta
beta

### Effect size
ES1 <- output1$ES
ES1

## Covariance matrix
covParm <- output1$covParm
covParm

### plot random effects for schools

plot(output1)

###############################################
## MLM analysis of multisite trials          ##	 
## with bootstrap confidence intervals       ##
###############################################

output2 <- mstFREQ(Posttest~ Intervention+Prettest,random="School",
		intervention="Intervention",nBoot=1000,data=mstData)

tp <- output2$Bootstrap
### Effect size

ES2 <- output2$ES
ES2

### plot bootstrapped values 

plot(output2, group=1)

#######################################################################
## MLM analysis of mutltisite trials with permutation p-value##
#######################################################################

output3 <- mstFREQ(Posttest~ Intervention+Prettest,random="School",
		intervention="Intervention",nPerm=1000,data=mstData)

ES3 <- output3$ES
ES3

#### plot permutated values 

plot(output3, group=1)
}

Run the code above in your browser using DataLab