Learn R Programming

⚠️There's a newer version (1.0.0) of this package.Take me there.

effectsize

Size does matter

The goal of this package is to provide utilities to work with indices of effect size and standardized parameters, allowing computation and conversion of indices such as Cohen’s d, r, odds-ratios, etc.

Installation

Run the following:

install.packages("devtools")
devtools::install_github("easystats/effectsize")
library("effectsize")

Documentation

Click on the buttons above to access the package documentation and the easystats blog, and check-out these vignettes:

Features

This package is focused on indices of effect size. But there are hundreds of them! Thus, everybody is welcome to contribute by adding support for the interpretation of new indices. If you’re not sure how to code it’s okay, just open an issue to discuss it and we’ll help :)

Effect Size Computation

Basic Indices (Cohen’s d, Hedges’ g, Glass’ delta)

The package provides functions to compute indices of effect size.

cohens_d(iris$Sepal.Length, iris$Sepal.Width)
## Cohens_d |       95% CI
## -----------------------
##     4.21 | [3.82, 4.63]
hedges_g(iris$Sepal.Length, iris$Sepal.Width)
## Hedges_g |       95% CI
## -----------------------
##     4.20 | [3.81, 4.62]
glass_delta(iris$Sepal.Length, iris$Sepal.Width)
## Glass_delta |       95% CI
## --------------------------
##        6.39 | [5.85, 6.97]

ANOVAs (Eta2, Omega2, …)

model <- aov(Sepal.Length ~ Species, data = iris)

omega_squared(model)
## Parameter | Omega_Sq_partial |       90% CI
## -------------------------------------------
## Species   |             0.61 | [0.53, 0.67]
eta_squared(model)
## Parameter | Eta_Sq_partial |       90% CI
## -----------------------------------------
## Species   |           0.62 | [0.54, 0.68]
epsilon_squared(model)
## Parameter | Epsilon_Sq_partial |       90% CI
## ---------------------------------------------
## Species   |               0.61 | [0.54, 0.67]
cohens_f(model)
## Parameter | Cohens_f_partial |       90% CI
## -------------------------------------------
## Species   |             1.27 | [1.09, 1.45]

Regression Models

Importantly, effectsize also provides advanced methods to compute standardized parameters for regression models.

lm(Sepal.Length ~ Species + Sepal.Length, data = iris) %>% 
  standardize_parameters()
##           Parameter Std_Coefficient
## 1       (Intercept)           -1.01
## 2 Speciesversicolor            1.12
## 3  Speciesvirginica            1.91

Effect Size Interpretation

The package allows for an automated interpretation of different indices.

interpret_r(r = 0.3)
## [1] "large"

Different sets of “rules of thumb” are implemented (guidelines are detailed here) and can be easily changed.

interpret_d(d = 0.45, rules = "cohen1988")
## [1] "small"
interpret_d(d = 0.45, rules = "funder2019")
## [1] "medium"

Effect Size Conversion

The package also provides ways of converting between different effect sizes.

convert_d_to_r(d = 1)
## [1] 0.447

Standardization

Many indices of effect size stem out, or are related, to standardization. Thus, it is expected that effectsize provides functions to standardize data and models.

Data standardization, normalization and rank-transformation

A standardization sets the mean and SD to 0 and 1:

library(parameters)

df <- standardize(iris)
describe_distribution(df$Sepal.Length)
## Mean | SD |   SE |         Range | Skewness | Kurtosis |   n | n_Missing
## ------------------------------------------------------------------------
## 0.00 |  1 | 0.08 | [-1.86, 2.48] |     0.31 |    -0.55 | 150 |         0

This can be also applied to statistical models:

std_model <- standardize(lm(Sepal.Length ~ Species, data = iris))
coef(std_model)
##       (Intercept) Speciesversicolor  Speciesvirginica 
##             -1.01              1.12              1.91

Alternatively, normalization is similar to standardization in that it is a linear translation of the parameter space (i.e., it does not change the shape of the data distribution). However, it puts the values within a 0 - 1 range, which can be useful in cases where you want to compare or visualise data on the same scale.

df <- normalize(iris)
describe_distribution(df$Sepal.Length)
## Mean |   SD |   SE |        Range | Skewness | Kurtosis |   n | n_Missing
## -------------------------------------------------------------------------
## 0.43 | 0.23 | 0.02 | [0.00, 1.00] |     0.31 |    -0.55 | 150 |         0

This is a special case of a rescaling function, which can be used to rescale the data to an arbitrary new scale. Let’s change all numeric variables to “percentages”:

df <- change_scale(iris, to = c(0, 100)) 
describe_distribution(df$Sepal.Length)
##  Mean |    SD |   SE |          Range | Skewness | Kurtosis |   n | n_Missing
## -----------------------------------------------------------------------------
## 42.87 | 23.00 | 1.88 | [0.00, 100.00] |     0.31 |    -0.55 | 150 |         0

For some robust statistics, one might also want to transfom the numeric values into ranks (or signed-ranks), which can be performed using the ranktransform() function.

ranktransform(c(1, 3, -2, 6, 6, 0))
## [1] 3.0 4.0 1.0 5.5 5.5 2.0

Copy Link

Version

Install

install.packages('effectsize')

Monthly Downloads

63,296

Version

0.3.0

License

GPL-3

Maintainer

Mattan S. Ben-Shachar

Last Published

April 11th, 2020

Functions in effectsize (0.3.0)

effectsize

Effect Size
eta_squared

Effect size for ANOVA
format_standardize

Transform a standardized vector into character
F_to_eta2

Convert test statistics (F, t) to indices of partial variance explained (partial Eta / Omega / Epsilon squared and Cohen's f)
adjust

Adjust data for the effect of other variable(s)
interpret_direction

Direction interpretation
interpret_ess

Bayesian indices interpretation
standardize

Standardization (Z-scoring)
interpret

Generic function for interpretation
change_scale

Rescale a numeric variable
phi

Effect size for contingency tables
interpret_gfi

Interpretation of indices of fit
chisq_to_phi

Conversion between Effect sizes for Contingency Tables (Chi2, Phi, Cramer's V...)
percentage_to_d

General effect size conversion
standardize_info

Get Standardization Information
interpret_odds

(Log) Odds ratio interpretation
rules

Interpretation Grid
sd_pooled

Pooled Standard Deviation
cohens_d

Effect size for differences
interpret_bf

Bayes Factor (BF) Interpretation
ranktransform

(Signed) rank transformation
convert_z_to_percentile

Z score to Percentile
interpret_omega_squared

ANOVA effect size interpretation
.factor_to_numeric

Safe transformation from factor/character to numeric
interpret_d

Standardized difference interpretation
interpret_p

p-values interpretation
interpret_r2

Coefficient of determination (R2) interpretation
normalize

Normalization
interpret_r

Correlation interpretation
interpret_parameters

Automated Interpretation of Effect Sizes
standardize_parameters

Parameters standardization
t_to_d

Convert test statistics (t, z, F) to effect sizes of differences (Cohen's d) or association (partial r)