Learn R Programming

⚠️There's a newer version (1.0.0) of this package.Take me there.

effectsize

Size does matter

The goal of this package is to provide utilities to work with indices of effect size and standardized parameters, allowing computation and conversion of indices such as Cohen’s d, r, odds-ratios, etc.

Installation

Run the following to install the latest GitHub-version of effectsize:

install.packages("devtools")
devtools::install_github("easystats/effectsize")

Or install the latest stable release from CRAN:

install.packages("effectsize")

Documentation

Click on the buttons above to access the package documentation and the easystats blog, and check-out these vignettes:

Features

This package is focused on indices of effect size. But there are hundreds of them! Thus, everybody is welcome to contribute by adding support for the interpretation of new indices. If you’re not sure how to code it’s okay, just open an issue to discuss it and we’ll help :)

library(effectsize)

Effect Size Computation

Basic Indices (Cohen’s d, Hedges’ g, Glass’ delta)

The package provides functions to compute indices of effect size.

cohens_d(iris$Sepal.Length, iris$Sepal.Width)
## Cohen's d |       95% CI
## ------------------------
##      4.21 | [3.80, 4.61]
hedges_g(iris$Sepal.Length, iris$Sepal.Width)
## Hedge's g |       95% CI
## ------------------------
##      4.20 | [3.79, 4.60]
glass_delta(iris$Sepal.Length, iris$Sepal.Width)
## Glass' delta |       95% CI
## ---------------------------
##         6.39 | [5.83, 6.95]

ANOVAs (Eta2, Omega2, …)

model <- aov(Sepal.Length ~ Species, data = iris)

omega_squared(model)
## Parameter | Omega2 (partial) |       90% CI
## -------------------------------------------
## Species   |             0.61 | [0.53, 0.67]
eta_squared(model)
## Parameter | Eta2 (partial) |       90% CI
## -----------------------------------------
## Species   |           0.62 | [0.54, 0.68]
epsilon_squared(model)
## Parameter | Epsilon2 (partial) |       90% CI
## ---------------------------------------------
## Species   |               0.61 | [0.54, 0.67]
cohens_f(model)
## Parameter | Cohen's f (partial) |       90% CI
## ----------------------------------------------
## Species   |                1.27 | [1.09, 1.45]

Regression Models

Importantly, effectsize also provides advanced methods to compute standardized parameters for regression models.

lm(Sepal.Length ~ Species + Sepal.Length, data = iris) %>% 
  standardize_parameters()
## Parameter         | Coefficient (std.) |         95% CI
## -------------------------------------------------------
## (Intercept)       |              -1.01 | [-1.18, -0.84]
## Speciesversicolor |               1.12 | [ 0.88,  1.37]
## Speciesvirginica  |               1.91 | [ 1.66,  2.16]

Effect Size Interpretation

The package allows for an automated interpretation of different indices.

interpret_r(r = 0.3)
## [1] "large"

Different sets of “rules of thumb” are implemented (guidelines are detailed here) and can be easily changed.

interpret_d(d = 0.45, rules = "cohen1988")
## [1] "small"
interpret_d(d = 0.45, rules = "funder2019")
## [1] "medium"

Effect Size Conversion

The package also provides ways of converting between different effect sizes.

convert_d_to_r(d = 1)
## [1] 0.447

Standardization

Many indices of effect size stem out, or are related, to standardization. Thus, it is expected that effectsize provides functions to standardize data and models.

Data standardization, normalization and rank-transformation

A standardization sets the mean and SD to 0 and 1:

library(parameters)

df <- standardize(iris)
describe_distribution(df$Sepal.Length)
##      Mean | SD |  IQR |         Range | Skewness | Kurtosis |   n | n_Missing
## -----------------------------------------------------------------------------
## -4.48e-16 |  1 | 1.57 | [-1.86, 2.48] |     0.31 |    -0.55 | 150 |         0

This can be also applied to statistical models:

std_model <- standardize(lm(Sepal.Length ~ Species, data = iris))
coef(std_model)
##       (Intercept) Speciesversicolor  Speciesvirginica 
##             -1.01              1.12              1.91

Alternatively, normalization is similar to standardization in that it is a linear translation of the parameter space (i.e., it does not change the shape of the data distribution). However, it puts the values within a 0 - 1 range, which can be useful in cases where you want to compare or visualise data on the same scale.

df <- normalize(iris)
describe_distribution(df$Sepal.Length)
## Mean |   SD |  IQR |        Range | Skewness | Kurtosis |   n | n_Missing
## -------------------------------------------------------------------------
## 0.43 | 0.23 | 0.36 | [0.00, 1.00] |     0.31 |    -0.55 | 150 |         0

This is a special case of a rescaling function, which can be used to rescale the data to an arbitrary new scale. Let’s change all numeric variables to “percentages”:

df <- change_scale(iris, to = c(0, 100)) 
describe_distribution(df$Sepal.Length)
##  Mean |    SD |   IQR |          Range | Skewness | Kurtosis |   n | n_Missing
## ------------------------------------------------------------------------------
## 42.87 | 23.00 | 36.11 | [0.00, 100.00] |     0.31 |    -0.55 | 150 |         0

For some robust statistics, one might also want to transfom the numeric values into ranks (or signed-ranks), which can be performed using the ranktransform() function.

ranktransform(c(1, 3, -2, 6, 6, 0))
## [1] 3.0 4.0 1.0 5.5 5.5 2.0

Copy Link

Version

Install

install.packages('effectsize')

Monthly Downloads

63,296

Version

0.3.3

License

GPL-3

Maintainer

Mattan S. Ben-Shachar

Last Published

September 17th, 2020

Functions in effectsize (0.3.3)

F_to_eta2

Convert test statistics (F, t) to indices of partial variance explained (partial Eta / Omega / Epsilon squared and Cohen's f)
effectsize

Effect Size
d_to_r

Convert between d, r and Odds ratio
chisq_to_phi

Conversion between Effect sizes for Contingency Tables (Chi2, Phi, Cramer's V...)
adjust

Adjust data for the effect of other variable(s)
change_scale

Rescale a numeric variable
equivalence_test.effectsize_table

Test for Practical Equivalence
.factor_to_numeric

Safe transformation from factor/character to numeric
cohens_d

Effect size for differences
d_to_common_language

Convert Standardized Mean Difference to Common Language Effect Sizes
eta_squared_posterior

Simulate Eta Squared from Posterior Predictive Distribution
interpret_d

Interpret standardized differences
eta_squared

Effect size for ANOVA
es_info

List of effect size names
interpret_odds

Interpret (log) Odds ratio
interpret_omega_squared

Interpret ANOVA effect size
interpret

Generic function for interpretation
normalize

Normalize numeric variable to [0-1] range
odds_to_probs

Convert between Odds and Probabilities
interpret_bf

Interpret Bayes Factor (BF)
interpret_ess

Interpret Bayesian diagnostic indices
interpret_gfi

Interpret of indices of CFA / SEM fit
format_standardize

Transform a standardized vector into character
interpret_direction

Interpret direction
t_to_d

Convert test statistics (t, z, F) to effect sizes of differences (Cohen's d) or association (partial r)
interpret_rope

Interpret Bayesian diagnostic indices
is_effectsize_name

Checks if character is of a supported effect size
standardize_parameters

Parameters standardization
standardize_info

Get Standardization Information
rules

Interpretation Grid
interpret_r

Interpret correlation
reexports

Objects exported from other packages
interpret_r2

Interpret coefficient of determination (R2)
interpret_parameters

Interpret of standardized slopes
interpret_p

Interpret p-values
ranktransform

(Signed) rank transformation
phi

Effect size for contingency tables
sd_pooled

Pooled Standard Deviation
standardize

Standardization (Z-scoring)