# NOT RUN {
if (require("afex")) {
  data(md_12.1)
  aov_ez("id", "rt", md_12.1,
    within = c("angle", "noise"),
    anova_table = list(correction = "none", es = "pes")
  )
}
# compare to:
(etas <- F_to_eta2(
  f = c(40.72, 33.77, 45.31),
  df = c(2, 1, 2),
  df_error = c(18, 9, 18)
))
if (require(see)) plot(etas)
if (require("lmerTest")) { # for the df_error
  fit <- lmer(extra ~ group + (1 | ID), sleep)
  # anova(fit)
  # #> Type III Analysis of Variance Table with Satterthwaite's method
  # #>       Sum Sq Mean Sq NumDF DenDF F value   Pr(>F)
  # #> group 12.482  12.482     1     9  16.501 0.002833 **
  # #> ---
  # #> Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
  F_to_eta2(16.501, 1, 9)
  F_to_omega2(16.501, 1, 9)
  F_to_epsilon2(16.501, 1, 9)
  F_to_f(16.501, 1, 9)
}
## Use with emmeans based contrasts
## --------------------------------
if (require(emmeans)) {
  warp.lm <- lm(breaks ~ wool * tension, data = warpbreaks)
  jt <- joint_tests(warp.lm, by = "wool")
  F_to_eta2(jt$F.ratio, jt$df1, jt$df2)
}
# }
Run the code above in your browser using DataLab