Interpret a value based on a set of rules. See rules()
.
interpret(x, ...)# S3 method for numeric
interpret(x, rules, name = attr(rules, "rule_name"), ...)
# S3 method for effectsize_table
interpret(x, rules, ...)
Vector of value break points (edges defining categories), or a data
frame of class effectsize_table
.
Currently not used.
Set of rules()
. When x
is a data frame, can be a name of an
established set of rules.
Name of the set of rules (stored as a 'rule_name' attribute).
For numeric input: A character vector of interpertations.
For data frames: the x
input with an additional Interpretation
column.
rules
# NOT RUN {
rules_grid <- rules(c(0.01, 0.05), c("very significant", "significant", "not significant"))
interpret(0.001, rules_grid)
interpret(0.021, rules_grid)
interpret(0.08, rules_grid)
interpret(c(0.01, 0.005, 0.08), rules_grid)
interpret(c(0.35, 0.15), c("small" = 0.2, "large" = 0.4), name = "Cohen's Rules")
interpret(c(0.35, 0.15), rules(c(0.2, 0.4), c("small", "medium", "large")))
# ----------
d <- cohens_d(mpg ~ am, data = mtcars)
interpret(d, rules = "cohen1988")
d <- glass_delta(mpg ~ am, data = mtcars)
interpret(d, rules = "gignac2016")
interpret(d, rules = rules(1, c("tiny", "yeah okay")))
m <- lm(formula = wt ~ am * cyl, data = mtcars)
eta2 <- eta_squared(m)
interpret(eta2, rules = "field2013")
X <- chisq.test(mtcars$am, mtcars$cyl == 8)
interpret(oddsratio(X), rules = "chen2010")
interpret(cramers_v(X), "lovakov2021")
# }
Run the code above in your browser using DataLab