cliff.delta(d, ... )
"cliff.delta"(formula, data=list() ,conf.level=.95, use.unbiased=TRUE, use.normal=FALSE, return.dm=FALSE, ...)
"cliff.delta"(d, f, conf.level=.95, use.unbiased=TRUE, use.normal=FALSE, return.dm=FALSE, ...)f is a factor) or the treatment group values (if f is a numeric vector)
y ~ f, where y is a numeric variable giving the data values and f a factor with two levels giving the corresponding group
formula. By default the variables are taken from environment(formula).
effsize containing the following components:
containing the following components:The magnitude is assessed using the thresholds provided in (Romano 2006), i.e. |d|<0.147 "negligible", |d|<0.33 "small", |d|<0.474 "medium", otherwise "large"
0.474>0.33>0.147>If the dominance matrix is required i.e. return.dm=TRUE) the full matrix is computed thus using the naive algorithm.
Otherwise, if treatment and control are factors then the optimized linear complexity algorithm is used, otherwise the RLE algorithm (with complexity n log n) is used.
J. Romano, J. D. Kromrey, J. Coraggio, J. Skowronek, Appropriate statistics for ordinal level data: Should we really be using t-test and cohen's d for evaluating group differences on the NSSE and other surveys?, in: Annual meeting of the Florida Association of Institutional Research, 2006.
K.Y. Hogarty and J.D.Kromrey (1999). Using SAS to Calculate Tests of Cliff's Delta. Proceedings of the Twenty-Foursth Annual SAS User Group International Conference, Miami Beach, Florida, p 238. Available at: http://www2.sas.com/proceedings/sugi24/Posters/p238-24.pdf
cohen.d, print.effsize
## Example data from Hogarty and Kromrey (1999)
treatment <- c(10,10,20,20,20,30,30,30,40,50)
control <- c(10,20,30,40,40,50)
res = cliff.delta(treatment,control,return.dm=TRUE)
print(res)
print(res$dm)
Run the code above in your browser using DataLab