
Last chance! 50% off unlimited learning
Sale ends in
vis_clustered_graphs
visualizes clustered_graphs using a list of
clustered graphs created with clustered_graphs
.
vis_clustered_graphs(
graphs,
node.size.multiplier = 1,
node.min.size = 0,
node.max.size = 200,
normalise.node.sizes = TRUE,
edge.width.multiplier = 1,
center = 1,
label.size = 0.8,
labels = FALSE,
legend.node.size = 45,
pdf.name = NULL,
...
)
vis_clustered_graphs
plots
a list
of igraph
objects created by the clustered_graphs
function.
clustered_graphs
returns a list of graph objects representing
the clustered ego-centered network data;
List
of graph
objects, representing the clustered
graphs.
Numeric
used to multiply the node diameter
of visualized nodes.
Numeric
indicating minimum size of plotted
nodes
Numeric
indicating maximum size of plotted
nodes
Logical.
If TRUE (default) node sizes
are plotted using per network proportions rather than counts.
Numeric
used to multiply the edge width.
Numeric
indicating the vertex to be plotted in center.
Numeric
.
Boolean
. Plots with turned off labels will be accompanied
by a 'legend' plot giving the labels of the vertices.
Numeric
used as node diameter of legend graph.
Character
giving the name/path of the pdf file to create.
Arguments to pass to plot.igraph
.
Brandes, U., Lerner, J., Lubbers, M. J., McCarty, C., & Molina, J. L. (2008). Visual Statistics for Collections of Clustered Graphs. 2008 IEEE Pacific Visualization Symposium, 47-54.
clustered_graphs
for creating clustered graphs objects
data("egor32")
# Simplify networks to clustered graphs, stored as igraph objects
graphs <- clustered_graphs(egor32, "country")
# Visualise
par(mfrow = c(2,3))
vis_clustered_graphs(
graphs[1:5]
)
par(mfrow = c(1,1))
Run the code above in your browser using DataLab