## tidy significant curvature regions
library(ggplot2)
data(hsct, package="ks")
hsct <- dplyr::as_tibble(hsct)
hsct <- dplyr::filter(hsct, PE.Ly65Mac1>0 & APC.CD45.2>0)
hsct12 <- dplyr::filter(hsct, subject==12)
hsct12 <- dplyr::select(hsct12, PE.Ly65Mac1, APC.CD45.2)
t1 <- tidy_kde(hsct12)
t2 <- tidy_kfs(hsct12)
gt <- ggplot(t2, aes(x=PE.Ly65Mac1, y=APC.CD45.2)) +
geom_contour_ks(data=t1, colour="grey50", cont=seq(10,90,by=10))
gt + geom_contour_filled_ks(aes(fill=after_stat(contregion)), colour=1)
gt + geom_contour_ks(aes(colour=after_stat(contregion)))
## geospatial significant curvature regions
data(wa)
data(grevilleasf)
hakeoides <- dplyr::filter(grevilleasf, species=="hakeoides")
s1 <- st_kfs(hakeoides)
## base R plot
xlim <- c(1.2e5, 1.1e6); ylim <- c(6.1e6, 7.2e6)
plot(wa, xlim=xlim, ylim=ylim)
plot(s1, add=TRUE)
## geom_sf plot
gs <- ggplot(s1) + geom_sf(data=wa, fill=NA) + ggthemes::theme_map()
gs + geom_sf(data=st_get_contour(s1), aes(fill=contregion)) +
coord_sf(xlim=xlim, ylim=ylim)
Run the code above in your browser using DataLab