Learn R Programming

elastic (version 0.7.6)

mtermvectors: Multi Termvectors

Description

Multi Termvectors

Usage

mtermvectors(index = NULL, type = NULL, ids = NULL, body = list(), pretty = TRUE, field_statistics = TRUE, fields = NULL, offsets = TRUE, parent = NULL, payloads = TRUE, positions = TRUE, preference = "random", realtime = TRUE, routing = NULL, term_statistics = FALSE, version = NULL, version_type = NULL, ...)

Arguments

index
(character) The index in which the document resides.
type
(character) The type of the document.
ids
(character) One or more document ids
body
(character) Define parameters and or supply a document to get termvectors for
pretty
(logical) pretty print. Default: TRUE
field_statistics
(character) Specifies if document count, sum of document frequencies and sum of total term frequencies should be returned. Default: TRUE
fields
(character) A comma-separated list of fields to return.
offsets
(character) Specifies if term offsets should be returned. Default: TRUE
parent
(character) Parent id of documents.
payloads
(character) Specifies if term payloads should be returned. Default: TRUE
positions
(character) Specifies if term positions should be returned. Default: TRUE
preference
(character) Specify the node or shard the operation should be performed on (Default: random).
realtime
(character) Specifies if request is real-time as opposed to near-real-time (Default: TRUE).
routing
(character) Specific routing value.
term_statistics
(character) Specifies if total term frequency and document frequency should be returned. Default: FALSE
version
(character) Explicit version number for concurrency control
version_type
(character) Specific version type, valid choices are: 'internal', 'external', 'external_gte', 'force'
...
Curl args passed on to POST

Details

Multi termvectors API allows to get multiple termvectors based on an index, type and id.

References

https://www.elastic.co/guide/en/elasticsearch/reference/current/docs-multi-termvectors.html

Examples

Run this code
## Not run: 
# connect()
# if (!index_exists('omdb')) {
#   omdb <- system.file("examples", "omdb.json", package = "elastic")
#   docs_bulk(omdb)
# }
# 
# # no index or type given
# body <- '{
#    "docs": [
#       {
#          "_index": "omdb",
#          "_type": "omdb",
#          "_id": "AVXdx8Eqg_0Z_tpMDyP_",
#          "term_statistics": true
#       },
#       {
#          "_index": "omdb",
#          "_type": "omdb",
#          "_id": "AVXdx8Eqg_0Z_tpMDyQ1",
#          "fields": [
#             "Plot"
#          ]
#       }
#    ]
# }'
# mtermvectors(body = body)
# 
# # index given, but not type
# body <- '{
#    "docs": [
#       {
#          "_type": "omdb",
#          "_id": "AVXdx8Eqg_0Z_tpMDyP_",
#          "fields": [
#             "Plot"
#          ],
#          "term_statistics": true
#       },
#       {
#          "_type": "omdb",
#          "_id": "AVXdx8Eqg_0Z_tpMDyQ1",
#          "fields": [
#             "Title"
#          ]
#       }
#    ]
# }'
# mtermvectors('omdb', body = body)
# 
# # index and type given
# body <- '{
#    "docs": [
#       {
#          "_id": "AVXdx8Eqg_0Z_tpMDyP_",
#          "fields": [
#             "Plot"
#          ],
#          "term_statistics": true
#       },
#       {
#          "_id": "AVXdx8Eqg_0Z_tpMDyQ1"
#       }
#    ]
# }'
# mtermvectors('omdb', 'omdb', body = body)
# 
# # index and type given, parameters same, so can simplify
# body <- '{
#     "ids" : ["AVXdx8Eqg_0Z_tpMDyP_", "AVXdx8Eqg_0Z_tpMDyQ1"],
#     "parameters": {
#         "fields": [
#             "Plot"
#         ],
#         "term_statistics": true
#     }
# }'
# mtermvectors('omdb', 'omdb', body = body)
# 
# # you can give user provided documents via the 'docs' parameter
# ## though you have to give index and type that exist in your Elasticsearch instance
# body <- '{
#    "docs": [
#       {
#          "_index": "omdb",
#          "_type": "omdb",
#          "doc" : {
#             "Director" : "John Doe",
#             "Plot" : "twitter test test test"
#          }
#       },
#       {
#          "_index": "omdb",
#          "_type": "omdb",
#          "doc" : {
#            "Director" : "Jane Doe",
#            "Plot" : "Another twitter test ..."
#          }
#       }
#    ]
# }'
# mtermvectors(body = body)
# ## End(Not run)

Run the code above in your browser using DataLab