cv.enet

0th

Percentile

Computes K-fold cross-validated error curve for elastic net

Computes the K-fold cross-validated mean squared prediction error for elastic net.

Keywords
regression
Usage
cv.enet(x, y, K = 10, lambda, s, mode,trace = FALSE, plot.it = TRUE, se = TRUE, ...)
Arguments
x
Input to lars
y
Input to lars
K
Number of folds
lambda
Quadratic penalty parameter
s
Abscissa values at which CV curve should be computed. A value, or vector of values, indexing the path. Its values depends on the mode= argument
mode
Mode="step" means the s= argument indexes the LARS-EN step number. If mode="fraction", then s should be a number between 0 and 1, and it refers to the ratio of the L1 norm of the coefficient vector, relative to the norm at the full LS solution. Mode="norm
trace
Show computations?
plot.it
Plot it?
se
Include standard error bands?
...
Additional arguments to enet
Value

  • Invisibly returns a list with components (which can be plotted using plotCVLars)
  • fractionValues of s
  • cvThe CV curve at each value of fraction
  • cv.errorThe standard error of the CV curve

References

Zou and Hastie (2004) "Regularization and Variable Selection via the Elastic Net" In press, Journal of the Royal Statistical Society, Series B.

Aliases
  • cv.enet
Examples
data(diabetes)
attach(diabetes)
## use the L1 fraction norm as the tuning parameter
cv.enet(x2,y,lambda=0.05,s=seq(0,1,length=100),mode="fraction",trace=TRUE,max.steps=80)
## use the number of steps as the tuning parameter
cv.enet(x2,y,lambda=0.05,s=1:50,mode="step")
detach(diabetes)
Documentation reproduced from package elasticnet, version 1.02, License: GPL version 2 or newer

Community examples

Looks like there are no examples yet.