Learn R Programming

elliptic (version 0.4-13)

J: Various modular functions

Description

Modular functions including Klein's modular function J (aka Dedekind's Valenz function J, aka the Klein invariant function, aka Klein's absolute invariant), the lambda function, and Delta

Usage

J(tau, use.theta = TRUE, ...)
J(tau, use.theta = TRUE, ...)
lambda(tau, ...)

Arguments

tau
$\tau$; it is assumed that Im(tau)>0
use.theta
Boolean, with default TRUE meaning to use the theta function expansion, and FALSE meaning to evaluate g2 and g3 directly
...
Extra arguments sent to either theta1() et seq, or g2.fun() and g3.fun() as appropriate

References

Chandrasekharan

Examples

Run this code
J(2.3+0.23i,use.theta=TRUE)
 J(2.3+0.23i,use.theta=FALSE)

 #Verify that J(z)=J(-1/z):
 z <- seq(from=1+0.7i,to=-2+1i,len=20)
 plot(abs((J(z)-J(-1/z))/J(z)))

 # Verify that lamba(z) = lambda(Mz) where M is a modular matrix with b,c
 # even and a,d odd:

 M <- matrix(c(5,4,16,13),2,2)
 z <- seq(from=1+1i,to=3+3i,len=100)
 plot(lambda(z)-lambda(M %mob% z,maxiter=100))


#Now a nice little plot:
 n <- 50
 x <- seq(from=-0.1, to=2,len=n)
 y <- seq(from=0.02,to=2,len=n)

 z <- outer(x,1i*y,"+")
 f <- lambda(z,maxiter=40)
 view(x,y,limit(lambda(z,maxiter=40)),code=4,real.contour=FALSE,imag.contour=FALSE)
 view(x,y,limit(J(z)),code=4,real.contour=FALSE,imag.contour=FALSE)

Run the code above in your browser using DataLab