Learn R Programming

elliptic (version 0.4-13)

divisor: Number theoretic functions

Description

Various useful number theoretic functions

Usage

divisor(n,k=1)
primes(n)
factorize(n)
mobius(n)
totient(n)

Arguments

n
Integer
k
Integer specifying second argument to sigma function

Details

Functions primes() and factorize() cut-and-pasted from Bill Venebles's conf.design package, version 0.0-3. Function primes(n) returns a vector of all primes not exceeding n; function factorize(n) returns an integer vector of nondecreasing primes whose product is n.

The others are multiplicative functions, defined in Hardy and Wright:

Function divisor(), also written $\sigma_k(n)$, is the divisor function defined on p239. This gives the sum of the $k^{\rm th}$ powers of all the divisors of n. Setting $k=0$ corresponds to $d(n)$, which gives the number of divisors of n.

mobius() is the M"{o}bius function (p234), giving zero if n has a repeated prime factor, and $(-1)^q$ where $n=p_1p_2\ldots p_q$ otherwise.

totient() is Euler's totient function (p52), giving the number of integers smaller than n and relatively prime to it.

References

G. H. Hardy and E. M. Wright, 1985. An introduction to the theory of numbers (fifth edition). Oxford University Press.

Examples

Run this code
mobius(1)
mobius(2)
divisor(140)
divisor(140,3)


plot(divisor(1:100,k=1),type="s",xlab="n",ylab="divisor(n,1)")

Run the code above in your browser using DataLab