Learn R Programming

⚠️There's a newer version (3.0.2) of this package.Take me there.

The elo Package

The elo package includes functions to address all kinds of Elo calculations.

library(elo)

It also includes comparable models for accuracy (auc, MSE) benchmarking (see, e.g., elo.glm() which fits a logistic regression model, elo.winpct() which fits a model based on win percentage, and elo.markovchain() which fits a Markov chain model). Please see the vignette for examples.

Naming Schema

Most functions begin with the prefix "elo.", for easy autocompletion.

  • Vectors or scalars of Elo scores are denoted elo.A or elo.B.

  • Vectors or scalars of wins by team A are denoted by wins.A.

  • Vectors or scalars of win probabilities are denoted by p.A.

  • Vectors of team names are denoted team.A or team.B.

Copy Link

Version

Install

install.packages('elo')

Monthly Downloads

518

Version

2.0.0

License

GPL (>= 2)

Issues

Pull Requests

Stars

Forks

Maintainer

Ethan Heinzen

Last Published

August 2nd, 2019

Functions in elo (2.0.0)

elo.fitted

Extract model values
elo.mse

Calculate the mean square error
elo

The Elo Package
elo.glm

elo.glm
elo.auc

Calculate AUC on an elo.run object
elo.markovchain

elo.markovchain
elo.mov

Create a "margin of victory" column
elo.calc

Elo functions
elo.model.frame

Interpret formulas in elo functions
elo.run.helpers

Helper functions for elo.run
elo.update

Elo functions
elo.prob

Elo functions
elo.winpct

elo.winpct
players

Details on elo formulas and the specials therein
score

Create a 1/0/0.5 win "indicator"
elo.run

elo.run
rank.teams

Rank teams
tournament

tournament: Mock data for examples
predict.elo.run

Make Predictions on an elo.run Object
predict.elo.winpct

Make Predictions on an elo.winpct Object
predict.elo.glm

Make Predictions on an elo.glm Object
predict.elo.markovchain

Make Predictions on an elo.markovchain Object
summary.elo.run

Summarize an elo.run Object
summary.elo.winpct

Summarize an elo.winpct Object
summary.elo.glm

Summarize an elo.glm Object
summary.elo.markovchain

Summarize an elo.markovchain Object
elo.favored

Classify teams that are favored to win