
Last chance! 50% off unlimited learning
Sale ends in
tsd(males = NULL, females = NULL, N = NULL, temperatures = NULL,
df = NULL, l = 0.05, parameters.initial = c(P = NA, S = -0.5, K = 0),
males.freq = TRUE, las.x = 1, las.y = 1,
lab.PT = "Pivotal temperature",
lab.TRT = paste0("Transitional range of temperatures l=", l * 100, "%"),
col.TRT = "gray", col.TRT.CI = rgb(0.8, 0.8, 0.8, 0.5),
col.PT.CI = rgb(0.8, 0.8, 0.8, 0.5), equation = "logistic",
replicate = 1000, range.CI = 0.95, print = TRUE, ...)
Godfrey, M.H., Delmas, V., Girondot, M., 2003. Assessment of patterns of temperature-dependent sex determination using maximum likelihood model selection. Ecoscience 10, 265-272.
Hulin, V., Delmas, V., Girondot, M., Godfrey, M.H., Guillon, J.-M., 2009. Temperature-dependent sex determination and global change: are some species at greater risk? Oecologia 160, 493-506.
CC_AtlanticSW <- subset(STSRE_TSD, RMU=="Atlantic, SW" &
Species=="Caretta caretta" & Sexed!=0)
par(mar=c(4,4,5,1)+0.1)
tsdL <- with (CC_AtlanticSW, tsd(males=Males, females=Females,
temperatures=Incubation.temperature-Correction.factor,
equation="logistic"))
tsdH <- with (CC_AtlanticSW, tsd(males=Males, females=Females,
temperatures=Incubation.temperature-Correction.factor,
equation="Hill"))
tsdR <- with (CC_AtlanticSW, tsd(males=Males, females=Females,
temperatures=Incubation.temperature-Correction.factor,
equation="Richards"))
gsd <- with (CC_AtlanticSW, tsd(males=Males, females=Females,
temperatures=Incubation.temperature-Correction.factor,
equation="GSD"))
compare_AIC(Logistic_Model=tsdL, Hill_model=tsdH, Richards_model=tsdR, GSD_model=gsd)
Run the code above in your browser using DataLab