if (FALSE) {
library(embryogrowth)
data(resultNest_4p_SSM)
# Some basic calculations to show the advantage of parallel computing
system.time(summary.nests <- info.nests(x=resultNest_4p_SSM, out="summary",
embryo.stages="Caretta caretta.SCL", replicate.CI=0, parallel=FALSE))
system.time(summary.nests <- info.nests(x=resultNest_4p_SSM, out="summary",
embryo.stages="Caretta caretta.SCL", replicate.CI=0, parallel=TRUE))
system.time(summary.nests <- info.nests(x=resultNest_4p_SSM, out="summary",
embryo.stages="Caretta caretta.SCL", replicate.CI=0, parallel=TRUE, progressbar=TRUE))
system.time(summary.nests <- info.nests(x=resultNest_4p_SSM, out="likelihood",
embryo.stages="Caretta caretta.SCL", replicate.CI=0, parallel=TRUE, progressbar=FALSE))
# By default parallel computing is TRUE but progressbar is FALSE
# When out is "likelihood", it returns only the likelihood
# otherwise, it returns a list with 3 objects "summary",
# "dynamic.metric", and "summary.dynamic.metric".
summary.nests <- info.nests(resultNest_4p_SSM, out="summary",
embryo.stages="Caretta caretta.SCL",
replicate.CI=100,
resultmcmc=resultNest_mcmc_4p_SSM,
GTRN.CI="MCMC",
progressbar=TRUE)
summary.nests <- info.nests(resultNest_4p_SSM,
embryo.stages="Caretta caretta.SCL",
out="summary", replicate.CI=100,
GTRN.CI="Hessian",
progressbar=TRUE)
summary.nests <- info.nests(resultNest_4p_SSM,
series = 1,
embryo.stages="Caretta caretta.SCL",
out="summary", replicate.CI=100,
GTRN.CI="SE",
progressbar=TRUE)
# Example of use of embryo.stages and TSP.borders:
summary.nests <- info.nests(resultNest_4p_SSM, out="summary",
embryo.stages=c("10"=0.33, "11"=0.33, "12"=0.66, "13"=0.66),
TSP.borders = c(10, 12),
replicate.CI=100,
progressbar=TRUE)
#########################################
# Sex ratio using Massey et al. method PM
#########################################
# Massey, M.D., Holt, S.M., Brooks, R.J., Rollinson, N., 2019. Measurement
# and modelling of primary sex ratios for species with temperature-dependent
# sex determination. J Exp Biol 222, 1-9.
CC_Mediterranean <- subset(DatabaseTSD, RMU=="Mediterranean" &
Species=="Caretta caretta" & (!is.na(Sexed) & Sexed!=0))
tsdL <- with (CC_Mediterranean, tsd(males=Males, females=Females,
temperatures=Incubation.temperature,
equation="logistic", replicate.CI=NULL))
PM <- info.nests(x=resultNest_4p_SSM,
GTRN.CI="Hessian", tsd.CI="Hessian",
embryo.stages="Caretta caretta.SCL", replicate.CI=100,
out="summary", progressbar=TRUE, tsd=tsdL)
plot_errbar(x=PM$summary$TimeWeighted.temperature.mean,
y=PM$summary$TSP.PM.GrowthWeighted.mean,
y.minus=PM$summary$TSP.PM.GrowthWeighted.quantile_0.025,
y.plus=PM$summary$TSP.PM.GrowthWeighted.quantile_0.975,
xlab="CTE SCL growth",
ylab="PM Massey et al. 2016", xlim=c(26, 32), ylim=c(0, 1), las=1)
# Relationship between growth and growth rate
infoall.df <- info.nests(x=resultNest_4p_SSM, out="summary",
embryo.stages="Caretta caretta.SCL",
replicate.CI=100,
resultmcmc=resultNest_mcmc_4p_SSM,
GTRN.CI="MCMC",
progressbar=TRUE)
layout(1)
plot(x=infoall.df$dynamic.metric[[1]][, "Time"],
y=infoall.df$dynamic.metric[[1]][, "Metric_50%"],
type="l", las=1, bty="n",
xlab="Time in minute", ylab="Growth", ylim=c(0, 39), xlim=c(0, 100000))
lines(x=infoall.df$dynamic.metric[[1]][, "Time"],
y=infoall.df$dynamic.metric[[1]][, "Metric_2.5%"], lty=2)
lines(x=infoall.df$dynamic.metric[[1]][, "Time"],
y=infoall.df$dynamic.metric[[1]][, "Metric_97.5%"], lty=2)
}
Run the code above in your browser using DataLab