Learn R Programming

emil (version 2.2.10)

fit_glmnet: Fit elastic net, LASSO or ridge regression model

Description

Using the glmnet package implementation.

Usage

fit_glmnet(x, y, family, nfolds, foldid, alpha = 1, lambda = NULL, ...)

fit_ridge_regression(...)

fit_lasso(...)

Arguments

x

Dataset.

y

Response vector. Can be of many different types for solving different problems, see glmnet.

family

Determines the the type of problem to solve. Auto detected if y is numeric or survival. See family for details.

nfolds
foldid
alpha

Regularization parameter, see glmnet.

lambda

Regularization parameter, see glmnet.

...

Sent to fit_glmnet or cv.glmnet.

Value

Fitted elastic net model.

Details

The alpha parameter of glmnet controls the type of penalty. Use 0 (default) for lasso only, 1 for ridge only, or an intermediate for a combination. This is typically the parameter to tune on. The shrinkage, controlled by the lambda parameter, can be left unspecified for internal tuning (works the same way as fit_glmnet).

References

Friedman J, Hastie T, Tibshirani R (2010). Regularization Paths for Generalized Linear Models via Coordinate Descent. Journal of Statistical Software, 33(1), 1<U+2013>22. doi:10.18637/jss.v033.i01.

See Also

emil, predict_glmnet, importance_glmnet, modeling_procedure