powered by
fit
evaluate
tune(procedure, ..., .verbose = getOption("emil_verbose", FALSE))is_tuned(procedure)is_tunable(procedure)detune(procedure)
is_tuned(procedure)
is_tunable(procedure)
detune(procedure)
Logical indicating if the procedure(s) are tuned.
Logical indicating if the has tunable parameters.
A list of untuned modeling procedures.
emil
modeling_procedure
predict
get_importance
procedure <- modeling_procedure("randomForest", parameter=list(mtry=1:4)) tuned.procedure <- tune(procedure, x=iris[-5], y=iris$Species) mod <- fit(tuned.procedure, x=iris[-5], y=iris$Species)
Run the code above in your browser using DataLab